These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 15734698)

  • 21. Coevolution of group-living and aposematism in caterpillars: warning colouration may facilitate the evolution from group-living to solitary habits.
    Wang L; Cornell SJ; Speed MP; Arbuckle K
    BMC Ecol Evol; 2021 Feb; 21(1):25. PubMed ID: 33583398
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolutionarily stable defence and signalling of that defence.
    Broom M; Speed MP; Ruxton GD
    J Theor Biol; 2006 Sep; 242(1):32-43. PubMed ID: 16529773
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aposematic signalling in prey-predator systems: determining evolutionary stability when prey populations consist of a single species.
    Scaramangas A; Broom M
    J Math Biol; 2022 Jul; 85(2):13. PubMed ID: 35870017
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evolution of color variation in dragon lizards: quantitative tests of the role of crypsis and local adaptation.
    Stuart-Fox DM; Moussalli A; Johnston GR; Owens IP
    Evolution; 2004 Jul; 58(7):1549-59. PubMed ID: 15341157
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Artificial neural networks and the study of evolution of prey coloration.
    Merilaita S
    Philos Trans R Soc Lond B Biol Sci; 2007 Mar; 362(1479):421-30. PubMed ID: 17255017
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evidence for a peak-shift in predator generalization among aposematic prey.
    Gamberale G; Tullberg BS
    Proc Biol Sci; 1996 Oct; 263(1375):1329-34. PubMed ID: 8914330
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aposematism and the handicap principle.
    Holen ØH; Svennungsen TO
    Am Nat; 2012 Nov; 180(5):629-41. PubMed ID: 23070323
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Avian predators attack aposematic prey more forcefully when they are part of an aggregation.
    Skelhorn J; Ruxton GD
    Biol Lett; 2006 Dec; 2(4):488-90. PubMed ID: 17148269
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ontogenetic shift from aposematism and gregariousness to crypsis in a Romaleid grasshopper.
    Despland E
    PLoS One; 2020; 15(8):e0237594. PubMed ID: 32817631
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Warning signals and predator-prey coevolution.
    Franks DW; Noble J
    Proc Biol Sci; 2004 Sep; 271(1550):1859-65. PubMed ID: 15315903
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Why has transparency evolved in aposematic butterflies? Insights from the largest radiation of aposematic butterflies, the Ithomiini.
    McClure M; Clerc C; Desbois C; Meichanetzoglou A; Cau M; Bastin-Héline L; Bacigalupo J; Houssin C; Pinna C; Nay B; Llaurens V; Berthier S; Andraud C; Gomez D; Elias M
    Proc Biol Sci; 2019 Apr; 286(1901):20182769. PubMed ID: 30991931
    [TBL] [Abstract][Full Text] [Related]  

  • 32. How bright and how nasty: explaining diversity in warning signal strength.
    Speed MP; Ruxton GD
    Evolution; 2007 Mar; 61(3):623-35. PubMed ID: 17348925
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Increased predation of nutrient-enriched aposematic prey.
    Halpin CG; Skelhorn J; Rowe C
    Proc Biol Sci; 2014 Apr; 281(1781):20133255. PubMed ID: 24598424
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Strong antiapostatic selection against novel rare aposematic prey.
    Lindström L; Alatalo RV; Lyytinen A; Mappes J
    Proc Natl Acad Sci U S A; 2001 Jul; 98(16):9181-4. PubMed ID: 11459937
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative analysis of passive defences in spiders (Araneae).
    Pekár S
    J Anim Ecol; 2014 Jul; 83(4):779-90. PubMed ID: 24205934
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Social transmission of avoidance among predators facilitates the spread of novel prey.
    Thorogood R; Kokko H; Mappes J
    Nat Ecol Evol; 2018 Feb; 2(2):254-261. PubMed ID: 29255302
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Explaining the evolution of warning coloration: secreted secondary defence chemicals may facilitate the evolution of visual aposematic signals.
    Gohli J; Högstedt G
    PLoS One; 2009 Jun; 4(6):e5779. PubMed ID: 19492013
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Background-matching and disruptive coloration, and the evolution of cryptic coloration.
    Merilaita S; Lind J
    Proc Biol Sci; 2005 Mar; 272(1563):665-70. PubMed ID: 15817442
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [The model of early evolution of aposematic coloration].
    Grabovskiĭ VI
    Zh Obshch Biol; 2012; 73(1):37-48. PubMed ID: 22567966
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Social learning within and across predator species reduces attacks on novel aposematic prey.
    Hämäläinen L; Mappes J; Rowland HM; Teichmann M; Thorogood R
    J Anim Ecol; 2020 May; 89(5):1153-1164. PubMed ID: 32077104
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.