These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 15734830)
1. Evaluation of facial features on particle inhalation. Anthony TR; Flynn MR; Eisner A Ann Occup Hyg; 2005 Mar; 49(2):179-93. PubMed ID: 15734830 [TBL] [Abstract][Full Text] [Related]
2. CFD model for a 3-D inhaling mannequin: verification and validation. Anthony TR; Flynn MR Ann Occup Hyg; 2006 Mar; 50(2):157-73. PubMed ID: 16157607 [TBL] [Abstract][Full Text] [Related]
3. Contribution of facial feature dimensions and velocity parameters on particle inhalability. Anthony TR Ann Occup Hyg; 2010 Aug; 54(6):710-25. PubMed ID: 20457783 [TBL] [Abstract][Full Text] [Related]
4. Inhalability of micron particles through the nose and mouth. Se CM; Inthavong K; Tu J Inhal Toxicol; 2010 Mar; 22(4):287-300. PubMed ID: 20070173 [TBL] [Abstract][Full Text] [Related]
5. Experimental methods to determine inhalability and personal sampler performance for aerosols in ultra-low windspeed environments. Schmees DK; Wu YH; Vincent JH J Environ Monit; 2008 Dec; 10(12):1426-36. PubMed ID: 19037484 [TBL] [Abstract][Full Text] [Related]
6. Computational fluid dynamics investigation of human aspiration in low-velocity air: orientation effects on mouth-breathing simulations. Anthony TR; Anderson KR Ann Occup Hyg; 2013 Jul; 57(6):740-57. PubMed ID: 23316076 [TBL] [Abstract][Full Text] [Related]
7. An empirical model of human aspiration in low-velocity air using CFD investigations. Anthony TR; Anderson KR J Occup Environ Hyg; 2015; 12(4):245-55. PubMed ID: 25438035 [TBL] [Abstract][Full Text] [Related]
8. Experimental investigation of the concept of a 'breathing zone' using a mannequin exposed to a point source of inertial/sedimenting particles emitted with momentum. Lidén G; Waher J Ann Occup Hyg; 2010 Jan; 54(1):100-16. PubMed ID: 19955328 [TBL] [Abstract][Full Text] [Related]
9. Predicting worker exposure--the effect of ventilation velocity, free-stream turbulence and thermal condition. Li J; Yavuz I; Celik I; Guffey S J Occup Environ Hyg; 2007 Nov; 4(11):864-74. PubMed ID: 17917950 [TBL] [Abstract][Full Text] [Related]
10. Computational fluid dynamics investigation of human aspiration in low velocity air: orientation effects on nose-breathing simulations. Anderson KR; Anthony TR Ann Occup Hyg; 2014 Jun; 58(5):625-45. PubMed ID: 24665111 [TBL] [Abstract][Full Text] [Related]
11. Uncertainty in aspiration efficiency estimates from torso simplifications in computational fluid dynamics simulations. Anderson KR; Anthony TR Ann Occup Hyg; 2013 Mar; 57(2):184-99. PubMed ID: 23006817 [TBL] [Abstract][Full Text] [Related]
12. Three dimensional modeling of air flow, aerosol distribution and aerosol samplers for unsteady conditions. Gilmutdinov A; Zivilskii I J Environ Monit; 2008 Dec; 10(12):1417-25. PubMed ID: 19037483 [TBL] [Abstract][Full Text] [Related]
13. Manikin-based performance evaluation of N95 filtering-facepiece respirators challenged with nanoparticles. Balazy A; Toivola M; Reponen T; Podgórski A; Zimmer A; Grinshpun SA Ann Occup Hyg; 2006 Apr; 50(3):259-69. PubMed ID: 16344291 [TBL] [Abstract][Full Text] [Related]
14. Contaminant dispersion in the vicinity of a worker in a uniform velocity field. Welling I; Andersson IM; Rosen G; Räisänen J; Mielo T; Marttinen K; Niemelä R Ann Occup Hyg; 2000 May; 44(3):219-25. PubMed ID: 10775670 [TBL] [Abstract][Full Text] [Related]
15. Source and trajectories of inhaled particles from a surrounding environment and its deposition in the respiratory airway. Inthavong K; Ge QJ; Li X; Tu JY Inhal Toxicol; 2013 Apr; 25(5):280-91. PubMed ID: 23614729 [TBL] [Abstract][Full Text] [Related]
16. Design and computational fluid dynamics investigation of a personal, high flow inhalable sampler. Anthony TR; Landázuri AC; Van Dyke M; Volckens J Ann Occup Hyg; 2010 Jun; 54(4):427-42. PubMed ID: 20418278 [TBL] [Abstract][Full Text] [Related]
17. Large organic aerosols in a dynamic and continuous whole-body exposure chamber tested on humans and on a heated mannequin. Lundgren L; Skare L; Lidén C; Tornling G Ann Occup Hyg; 2006 Oct; 50(7):705-15. PubMed ID: 16777913 [TBL] [Abstract][Full Text] [Related]
18. Occupational exposure to hazardous airborne pollutants: effects of air mixing and source location. Rim D; Novoselac A J Occup Environ Hyg; 2010 Dec; 7(12):683-92. PubMed ID: 20981607 [TBL] [Abstract][Full Text] [Related]
19. Transport of airborne particles within a room. Richmond-Bryant J; Eisner AD; Brixey LA; Wiener RW Indoor Air; 2006 Feb; 16(1):48-55. PubMed ID: 16420497 [TBL] [Abstract][Full Text] [Related]
20. Influence of secondary aspiration on human aspiration efficiency. Anderson KR; Anthony TR J Aerosol Sci; 2014 Sep; 75():65-80. PubMed ID: 26778849 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]