These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 15734882)

  • 1. Variants of the tissue-sensor array window chamber.
    Makale MT; Chen PC; Gough DA
    Am J Physiol Heart Circ Physiol; 2005 Jul; 289(1):H57-65. PubMed ID: 15734882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue window chamber system for validation of implanted oxygen sensors.
    Makale MT; Lin JT; Calou RE; Tsai AG; Chen PC; Gough DA
    Am J Physiol Heart Circ Physiol; 2003 Jun; 284(6):H2288-94. PubMed ID: 12598234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mass transfer and gas-phase calibration of implanted oxygen sensors.
    Makale MT; Jablecki MC; Gough DA
    Anal Chem; 2004 Mar; 76(6):1773-7. PubMed ID: 15018582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose Monitoring in Individuals With Diabetes Using a Long-Term Implanted Sensor/Telemetry System and Model.
    Lucisano JY; Routh TL; Lin JT; Gough DA
    IEEE Trans Biomed Eng; 2017 Sep; 64(9):1982-1993. PubMed ID: 27775510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Percutaneous window chamber method for chronic intravital microscopy of sensor-tissue interactions.
    Koschwanez HE; Klitzman B; Reichert WM
    J Diabetes Sci Technol; 2008 Nov; 2(6):977-83. PubMed ID: 19885287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Permeability of subcutaneous tissues surrounding long-term implants to oxygen.
    Kumosa LS; Routh TL; Lin JT; Lucisano JY; Gough DA
    Biomaterials; 2014 Sep; 35(29):8287-96. PubMed ID: 24998180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and validation of the transparent oxygen sensor array.
    Sargent BJ; Gough DA
    IEEE Trans Biomed Eng; 1991 May; 38(5):476-82. PubMed ID: 1874530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Murine model of implantable glucose sensors: a novel model for glucose sensor development.
    Klueh U; Kreutzer DL
    Diabetes Technol Ther; 2005 Oct; 7(5):727-37; discussion 738-40. PubMed ID: 16241876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocompatibility of an enzyme-based, electrochemical glucose sensor for short-term implantation in the subcutis.
    Kvist PH; Iburg T; Aalbaek B; Gerstenberg M; Schoier C; Kaastrup P; Buch-Rasmussen T; Hasselager E; Jensen HE
    Diabetes Technol Ther; 2006 Oct; 8(5):546-59. PubMed ID: 17037969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of subcutaneously implanted glucose sensors for continuous monitoring.
    Gerritsen M; Jansen JA; Lutterman JA
    Neth J Med; 1999 Apr; 54(4):167-79. PubMed ID: 10218387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Subcutaneously implantable glucose sensors in patients with diabetes mellitus; still many problems].
    Gerritsen M; Jansen JA; Lutterman JA
    Ned Tijdschr Geneeskd; 2002 Jul; 146(28):1313-6. PubMed ID: 12148218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Function of an implanted tissue glucose sensor for more than 1 year in animals.
    Gough DA; Kumosa LS; Routh TL; Lin JT; Lucisano JY
    Sci Transl Med; 2010 Jul; 2(42):42ra53. PubMed ID: 20668297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-invasive glucose monitoring in patients with Type 1 diabetes: a Multisensor system combining sensors for dielectric and optical characterisation of skin.
    Caduff A; Talary MS; Mueller M; Dewarrat F; Klisic J; Donath M; Heinemann L; Stahel WA
    Biosens Bioelectron; 2009 May; 24(9):2778-84. PubMed ID: 19286364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the Physiological Factors Affecting Glucose Sensor Function in Vivo.
    Novak MT; Reichert WM
    J Diabetes Sci Technol; 2015 Jun; 9(5):993-8. PubMed ID: 26134832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. in vivo ischemia monitoring array for endoscopic surgery.
    Tahirbegi IB; Mir M; Schostek S; Schurr M; Samitier J
    Biosens Bioelectron; 2014 Nov; 61():124-30. PubMed ID: 24874655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wide-field functional imaging of blood flow and hemoglobin oxygen saturation in the rodent dorsal window chamber.
    Moy AJ; White SM; Indrawan ES; Lotfi J; Nudelman MJ; Costantini SJ; Agarwal N; Jia W; Kelly KM; Sorg BS; Choi B
    Microvasc Res; 2011 Nov; 82(3):199-209. PubMed ID: 21787792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioluminescence imaging of glucose in tissue surrounding polyurethane and glucose sensor implants.
    Prichard HL; Schroeder T; Reichert WM; Klitzman B
    J Diabetes Sci Technol; 2010 Sep; 4(5):1055-62. PubMed ID: 20920425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multisensor array for visualizing continuous state transitions in biopharmaceutical processes using principal component analysis.
    Mandenius CF; Hagman A; Dunås F; Sundgren H; Lundström I
    Biosens Bioelectron; 1998 Feb; 13(2):193-9. PubMed ID: 9597735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of subcutaneously-implanted glucose sensors for continuous glucose measurements in hyperglycemic pigs.
    Kvist PH; Bielecki M; Gerstenberg M; Rossmeisl C; Jensen HE; Rolin B; Hasselager E
    In Vivo; 2006; 20(2):195-203. PubMed ID: 16634519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microvascular oxygen delivery and consumption following treatment with verapamil.
    Hangai-Hoger N; Tsai AG; Friesenecker B; Cabrales P; Intaglietta M
    Am J Physiol Heart Circ Physiol; 2005 Apr; 288(4):H1515-20. PubMed ID: 15563532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.