BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 15736271)

  • 1. Catchlike property of skeletal muscle: recent findings and clinical implications.
    Binder-Macleod S; Kesar T
    Muscle Nerve; 2005 Jun; 31(6):681-93. PubMed ID: 15736271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of potentiation on the catchlike property of human skeletal muscles.
    Ding J; Storaska JA; Binder-Macleod SA
    Muscle Nerve; 2003 Mar; 27(3):312-9. PubMed ID: 12635118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of length on the catchlike property of human quadriceps femoris muscle.
    Lee SC; Gerdom ML; Binder-Macleod SA
    Phys Ther; 1999 Aug; 79(8):738-48. PubMed ID: 10440660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of fatigue on the catchlike property in a turtle hindlimb muscle.
    Callister RJ; Reinking RM; Stuart DG
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Dec; 189(12):857-66. PubMed ID: 14566421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catchlike property in human adductor pollicis muscle.
    Fortuna R; Vaz MA; Herzog W
    J Electromyogr Kinesiol; 2012 Apr; 22(2):228-33. PubMed ID: 22033309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quadriceps fatigue caused by catchlike-inducing trains is not altered in old age.
    Allman BL; Cheng AJ; Rice CL
    Muscle Nerve; 2004 Dec; 30(6):743-51. PubMed ID: 15468338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catchlike property of rat diaphragm: subsequent train frequency effects in variable-train stimulation.
    van Lunteren E; Sankey CB
    J Appl Physiol (1985); 2000 Feb; 88(2):586-98. PubMed ID: 10658027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of activation pattern on nonisometric human skeletal muscle performance.
    Maladen RD; Perumal R; Wexler AS; Binder-Macleod SA
    J Appl Physiol (1985); 2007 May; 102(5):1985-91. PubMed ID: 17272410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catchlike property of human muscle during isovelocity movements.
    Binder-Macleod SA; Lee SC
    J Appl Physiol (1985); 1996 Jun; 80(6):2051-9. PubMed ID: 8806913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of the fatigue-induced force decline in human skeletal muscle by optimized stimulation trains.
    Binder-Macleod SA; Lee SC; Baadte SA
    Arch Phys Med Rehabil; 1997 Oct; 78(10):1129-37. PubMed ID: 9339165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic costs of force generation for constant-frequency and catchlike-inducing electrical stimulation in human tibialis anterior muscle.
    Ratkevicius A; Quistorff B
    Muscle Nerve; 2002 Mar; 25(3):419-26. PubMed ID: 11870720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatigue of paralyzed and control thenar muscles induced by variable or constant frequency stimulation.
    Thomas CK; Griffin L; Godfrey S; Ribot-Ciscar E; Butler JE
    J Neurophysiol; 2003 Apr; 89(4):2055-64. PubMed ID: 12611940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of a catchlike property of human skeletal muscle to reduce fatigue.
    Binder-Macleod SA; Barker CB
    Muscle Nerve; 1991 Sep; 14(9):850-7. PubMed ID: 1922180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of muscle fatigue by catchlike-inducing intermittent electrical stimulation in rat skeletal muscle.
    Shimada Y; Ito H; Matsunaga T; Misawa A; Kawatani M; Itoi E
    Biomed Res; 2006 Aug; 27(4):183-9. PubMed ID: 16971771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting optimal electrical stimulation for repetitive human muscle activation.
    Chou LW; Ding J; Wexler AS; Binder-Macleod SA
    J Electromyogr Kinesiol; 2005 Jun; 15(3):300-9. PubMed ID: 15763677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of frequency and pulse duration on human muscle fatigue during repetitive electrical stimulation.
    Kesar T; Binder-Macleod S
    Exp Physiol; 2006 Nov; 91(6):967-76. PubMed ID: 16873456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Augmentation of the contraction force of human thenar muscles by and during brief discharge trains.
    Howells J; Trevillion L; Jankelowitz S; Burke D
    Muscle Nerve; 2006 Mar; 33(3):384-92. PubMed ID: 16435342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of posttetanic potentiation and the catchlike property in mouse skeletal muscle.
    Gittings W; Bunda J; Stull JT; Vandenboom R
    Muscle Nerve; 2016 Aug; 54(2):308-16. PubMed ID: 26802366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mathematical model that predicts the force-frequency relationship of human skeletal muscle.
    Ding J; Wexler AS; Binder-Macleod SA
    Muscle Nerve; 2002 Oct; 26(4):477-85. PubMed ID: 12362412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tetanic depression in fast motor units of the cat gastrocnemius muscle.
    Celichowski J; Krutki P; Łochyński D; Grottel K; Mróczyński W
    J Physiol Pharmacol; 2004 Jun; 55(2):291-303. PubMed ID: 15213353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.