These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 15736271)

  • 41. Fatigue-related changes in motor-unit synchronization of quadriceps muscles within and across legs.
    Boonstra TW; Daffertshofer A; van Ditshuizen JC; van den Heuvel MR; Hofman C; Willigenburg NW; Beek PJ
    J Electromyogr Kinesiol; 2008 Oct; 18(5):717-31. PubMed ID: 17462912
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Variable frequency trains enhance torque independent of stimulation amplitude.
    Slade JM; Bickel CS; Warren GL; Dudley GA
    Acta Physiol Scand; 2003 Jan; 177(1):87-92. PubMed ID: 12492782
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison of fatigue produced by various electrical stimulation trains.
    Binder-Macleod SA; Scott WB
    Acta Physiol Scand; 2001 Jul; 172(3):195-203. PubMed ID: 11472306
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Different motor neuron spike patterns produce contractions with very similar rises in graded slow muscles.
    Hooper SL; Guschlbauer C; von Uckermann G; Büschges A
    J Neurophysiol; 2007 Feb; 97(2):1428-44. PubMed ID: 17167058
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A predictive fatigue model--I: Predicting the effect of stimulation frequency and pattern on fatigue.
    Ding J; Wexler AS; Binder-Macleod SA
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):48-58. PubMed ID: 12173739
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interleaved, multisite electrical stimulation of cat sciatic nerve produces fatigue-resistant, ripple-free motor responses.
    McDonnall D; Clark GA; Normann RA
    IEEE Trans Neural Syst Rehabil Eng; 2004 Jun; 12(2):208-15. PubMed ID: 15218935
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analysis of the unfused tetanus course in fast motor units of the rat medial gastrocnemius muscle.
    Celichowski J; Pogrzebna M; Raikova RT
    Arch Ital Biol; 2005 Feb; 143(1):51-63. PubMed ID: 15844668
    [TBL] [Abstract][Full Text] [Related]  

  • 48. EMG changes in human thenar motor units with force potentiation and fatigue.
    Thomas CK; Johansson RS; Bigland-Ritchie B
    J Neurophysiol; 2006 Mar; 95(3):1518-26. PubMed ID: 16267110
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The inclusion of interstimulus interval variability does not mitigate electrically-evoked fatigue of the knee extensors.
    Yacyshyn AF; Huculak RB; McNeil CJ
    Eur J Appl Physiol; 2020 Dec; 120(12):2649-2656. PubMed ID: 32888057
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of burst frequency and duration of kilohertz-frequency alternating currents and of low-frequency pulsed currents on strength of contraction, muscle fatigue, and perceived discomfort.
    Laufer Y; Elboim M
    Phys Ther; 2008 Oct; 88(10):1167-76. PubMed ID: 18703676
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Forelimb movements and muscle responses evoked by microstimulation of cervical spinal cord in sedated monkeys.
    Moritz CT; Lucas TH; Perlmutter SI; Fetz EE
    J Neurophysiol; 2007 Jan; 97(1):110-20. PubMed ID: 16971685
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Factors influencing the relation between corticospinal output and muscle force during voluntary contractions.
    Gelli F; Del Santo F; Popa T; Mazzocchio R; Rossi A
    Eur J Neurosci; 2007 Jun; 25(11):3469-75. PubMed ID: 17553016
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Effect of nitric oxide on the efficiency of oxygen consumption by the working skeletal muscle in fatigue].
    Bohuslavs'kyĭ AIu; Dmytriieva AV; Sahach VF
    Fiziol Zh (1994); 2005; 51(1):33-42. PubMed ID: 15801198
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Motor unit recruitment and bursts of activity in the surface electromyogram during a sustained contraction.
    Riley ZA; Terry ME; Mendez-Villanueva A; Litsey JC; Enoka RM
    Muscle Nerve; 2008 Jun; 37(6):745-53. PubMed ID: 18288713
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The effect of random modulation of functional electrical stimulation parameters on muscle fatigue.
    Graham GM; Thrasher TA; Popovic MR
    IEEE Trans Neural Syst Rehabil Eng; 2006 Mar; 14(1):38-45. PubMed ID: 16562630
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Predicting the effect of muscle length on fatigue during electrical stimulation.
    Marion MS; Wexler AS; Hull ML; Binder-Macleod SA
    Muscle Nerve; 2009 Oct; 40(4):573-81. PubMed ID: 19626673
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Relationship between stimulation train characteristics and dynamic human skeletal muscle performance.
    Maladen R; Perumal R; Wexler AS; Binder-Macleod SA
    Acta Physiol (Oxf); 2007 Apr; 189(4):337-46. PubMed ID: 17367403
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Variable-frequency train stimulation of canine latissimus dorsi muscle during shortening contractions.
    George DT; Binder-Macleod SA; Delosso TN; Santamore WP
    J Appl Physiol (1985); 1997 Sep; 83(3):994-1001. PubMed ID: 9292488
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of electrical stimulation pattern on the force responses of paralyzed human quadriceps muscles.
    Scott WB; Lee SC; Johnston TE; Binkley J; Binder-Macleod SA
    Muscle Nerve; 2007 Apr; 35(4):471-8. PubMed ID: 17212347
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The electrophysiological muscle scan.
    Blok JH; Ruitenberg A; Maathuis EM; Visser GH
    Muscle Nerve; 2007 Oct; 36(4):436-46. PubMed ID: 17614319
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.