BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 15736937)

  • 1. Directed coevolution of stability and catalytic activity in calcium-free subtilisin.
    Strausberg SL; Ruan B; Fisher KE; Alexander PA; Bryan PN
    Biochemistry; 2005 Mar; 44(9):3272-9. PubMed ID: 15736937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering substrate preference in subtilisin: structural and kinetic analysis of a specificity mutant.
    Ruan B; London V; Fisher KE; Gallagher DT; Bryan PN
    Biochemistry; 2008 Jun; 47(25):6628-36. PubMed ID: 18507395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of low-temperature caseinolytic activity of a thermophilic subtilase by directed evolution and site-directed mutagenesis.
    Zhong CQ; Song S; Fang N; Liang X; Zhu H; Tang XF; Tang B
    Biotechnol Bioeng; 2009 Dec; 104(5):862-70. PubMed ID: 19609954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directed evolution study of temperature adaptation in a psychrophilic enzyme.
    Miyazaki K; Wintrode PL; Grayling RA; Rubingh DN; Arnold FH
    J Mol Biol; 2000 Apr; 297(4):1015-26. PubMed ID: 10736234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of the catalytic activity of a 27 kDa subtilisin-like enzyme from Bacillus amyloliquefaciens CH51 by in vitro mutagenesis.
    Kim J; Kim JH; Choi KH; Kim JH; Song YS; Cha J
    J Agric Food Chem; 2011 Aug; 59(16):8675-82. PubMed ID: 21780825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutational analysis of the autoprocessing site of subtilisin YaB-G124A.
    Chang YS; Liaw SH; Mei HC; Hsu CC; Wu CY; Tsai YC
    Biochem Biophys Res Commun; 2002 Feb; 291(1):165-9. PubMed ID: 11829478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical and molecular characterization of a detergent-stable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency.
    Jaouadi B; Ellouz-Chaabouni S; Rhimi M; Bejar S
    Biochimie; 2008 Sep; 90(9):1291-305. PubMed ID: 18397761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cold adaptation of a mesophilic subtilisin-like protease by laboratory evolution.
    Wintrode PL; Miyazaki K; Arnold FH
    J Biol Chem; 2000 Oct; 275(41):31635-40. PubMed ID: 10906329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved catalytic properties of halohydrin dehalogenase by modification of the halide-binding site.
    Tang L; Torres Pazmiño DE; Fraaije MW; de Jong RM; Dijkstra BW; Janssen DB
    Biochemistry; 2005 May; 44(17):6609-18. PubMed ID: 15850394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid folding of calcium-free subtilisin by a stabilized pro-domain mutant.
    Ruan B; Hoskins J; Bryan PN
    Biochemistry; 1999 Jun; 38(26):8562-71. PubMed ID: 10387104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering a substrate-specific cold-adapted subtilisin.
    Tindbaek N; Svendsen A; Oestergaard PR; Draborg H
    Protein Eng Des Sel; 2004 Feb; 17(2):149-56. PubMed ID: 15047911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular and structural characterization of a surfactant-stable high-alkaline protease AprB with a novel structural feature unique to subtilisin family.
    Deng A; Wu J; Zhang G; Wen T
    Biochimie; 2011 Apr; 93(4):783-91. PubMed ID: 21281692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altering substrate specificity of phosphatidylcholine-preferring phospholipase C of Bacillus cereus by random mutagenesis of the headgroup binding site.
    Antikainen NM; Hergenrother PJ; Harris MM; Corbett W; Martin SF
    Biochemistry; 2003 Feb; 42(6):1603-10. PubMed ID: 12578373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conserved cysteine 126 in triosephosphate isomerase is required not for enzymatic activity but for proper folding and stability.
    González-Mondragón E; Zubillaga RA; Saavedra E; Chánez-Cárdenas ME; Pérez-Montfort R; Hernández-Arana A
    Biochemistry; 2004 Mar; 43(11):3255-63. PubMed ID: 15023076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Do enzymes change the nature of transition states? Mapping the transition state for general acid-base catalysis of a serine protease.
    Bott RR; Chan G; Domingo B; Ganshaw G; Hsia CY; Knapp M; Murray CJ
    Biochemistry; 2003 Sep; 42(36):10545-53. PubMed ID: 12962477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remarkable improvements of a neutral protease activity and stability share the same structural origins.
    Asghari SM; Pazhang M; Ehtesham S; Karbalaei-Heidari HR; Taghdir M; Sadeghizadeh M; Naderi-Manesh H; Khajeh K
    Protein Eng Des Sel; 2010 Aug; 23(8):599-606. PubMed ID: 20513706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic stability modelling of keratinolytic protease P45: influence of temperature and metal ions.
    Daroit DJ; Sant'anna V; Brandelli A
    Appl Biochem Biotechnol; 2011 Dec; 165(7-8):1740-53. PubMed ID: 21960275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of the activity and alkaline pH stability of Thermobifida fusca xylanase A by directed evolution.
    Wang Q; Xia T
    Biotechnol Lett; 2008 May; 30(5):937-44. PubMed ID: 18292971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Display of active subtilisin 309 on phage: analysis of parameters influencing the selection of subtilisin variants with changed substrate specificity from libraries using phosphonylating inhibitors.
    Legendre D; Laraki N; Gräslund T; Bjørnvad ME; Bouchet M; Nygren PA; Borchert TV; Fastrez J
    J Mol Biol; 2000 Feb; 296(1):87-102. PubMed ID: 10656819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing activity and thermal resistance of Bacillus gibsonii alkaline protease (BgAP) by directed evolution.
    Martinez R; Jakob F; Tu R; Siegert P; Maurer KH; Schwaneberg U
    Biotechnol Bioeng; 2013 Mar; 110(3):711-20. PubMed ID: 23097081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.