BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 15736944)

  • 1. Base selectivity is impaired by mutants that perturb hydrogen bonding networks in the RB69 DNA polymerase active site.
    Yang G; Wang J; Konigsberg W
    Biochemistry; 2005 Mar; 44(9):3338-46. PubMed ID: 15736944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The L561A substitution in the nascent base-pair binding pocket of RB69 DNA polymerase reduces base discrimination.
    Zhang H; Rhee C; Bebenek A; Drake JW; Wang J; Konigsberg W
    Biochemistry; 2006 Feb; 45(7):2211-20. PubMed ID: 16475809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A conserved Tyr residue is required for sugar selectivity in a Pol alpha DNA polymerase.
    Yang G; Franklin M; Li J; Lin TC; Konigsberg W
    Biochemistry; 2002 Aug; 41(32):10256-61. PubMed ID: 12162740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steady-state kinetic characterization of RB69 DNA polymerase mutants that affect dNTP incorporation.
    Yang G; Lin T; Karam J; Konigsberg WH
    Biochemistry; 1999 Jun; 38(25):8094-101. PubMed ID: 10387055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The activity of selected RB69 DNA polymerase mutants can be restored by manganese ions: the existence of alternative metal ion ligands used during the polymerization cycle.
    Zakharova E; Wang J; Konigsberg W
    Biochemistry; 2004 Jun; 43(21):6587-95. PubMed ID: 15157091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using a fluorescent cytosine analogue tC(o) to probe the effect of the Y567 to Ala substitution on the preinsertion steps of dNMP incorporation by RB69 DNA polymerase.
    Xia S; Beckman J; Wang J; Konigsberg WH
    Biochemistry; 2012 Jun; 51(22):4609-17. PubMed ID: 22616982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pre-steady-state kinetics of RB69 DNA polymerase and its exo domain mutants: effect of pH and thiophosphoryl linkages on 3'-5' exonuclease activity.
    Wang CX; Zakharova E; Li J; Joyce CM; Wang J; Konigsberg W
    Biochemistry; 2004 Apr; 43(13):3853-61. PubMed ID: 15049692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of A and B metal ion site occupancy on conformational changes in an RB69 DNA polymerase ternary complex.
    Wang M; Lee HR; Konigsberg W
    Biochemistry; 2009 Mar; 48(10):2075-86. PubMed ID: 19228037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen-bonding capability of a templating difluorotoluene nucleotide residue in an RB69 DNA polymerase ternary complex.
    Xia S; Konigsberg WH; Wang J
    J Am Chem Soc; 2011 Jul; 133(26):10003-5. PubMed ID: 21667997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substitution of Ala for Tyr567 in RB69 DNA polymerase allows dAMP and dGMP to be inserted opposite Guanidinohydantoin .
    Beckman J; Wang M; Blaha G; Wang J; Konigsberg WH
    Biochemistry; 2010 Oct; 49(39):8554-63. PubMed ID: 20795733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of nucleotide insertion and extension at 8-oxo-7,8-dihydroguanine by replicative T7 polymerase exo- and human immunodeficiency virus-1 reverse transcriptase using steady-state and pre-steady-state kinetics.
    Furge LL; Guengerich FP
    Biochemistry; 1997 May; 36(21):6475-87. PubMed ID: 9174365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The reopening rate of the fingers domain is a determinant of base selectivity for RB69 DNA polymerase.
    Lee HR; Wang M; Konigsberg W
    Biochemistry; 2009 Mar; 48(10):2087-98. PubMed ID: 19228036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substitution of Ala for Tyr567 in RB69 DNA polymerase allows dAMP to be inserted opposite 7,8-dihydro-8-oxoguanine .
    Beckman J; Wang M; Blaha G; Wang J; Konigsberg WH
    Biochemistry; 2010 May; 49(19):4116-25. PubMed ID: 20411947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a replicative DNA polymerase mutant with reduced fidelity and increased translesion synthesis capacity.
    Zhong X; Pedersen LC; Kunkel TA
    Nucleic Acids Res; 2008 Jul; 36(12):3892-904. PubMed ID: 18503083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pre-steady-state kinetic studies of the fidelity of human DNA polymerase mu.
    Roettger MP; Fiala KA; Sompalli S; Dong Y; Suo Z
    Biochemistry; 2004 Nov; 43(43):13827-38. PubMed ID: 15504045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of error generation in homologous B-family DNA polymerases.
    Hogg M; Cooper W; Reha-Krantz L; Wallace SS
    Nucleic Acids Res; 2006; 34(9):2528-35. PubMed ID: 16687658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RB69 DNA polymerase mutants with expanded nascent base-pair-binding pockets are highly efficient but have reduced base selectivity.
    Zhang H; Beckman J; Wang J; Konigsberg W
    Biochemistry; 2009 Jul; 48(29):6940-50. PubMed ID: 19522539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steady-state and pre-steady-state kinetic analysis of dNTP insertion opposite 8-oxo-7,8-dihydroguanine by Escherichia coli polymerases I exo- and II exo-.
    Lowe LG; Guengerich FP
    Biochemistry; 1996 Jul; 35(30):9840-9. PubMed ID: 8703958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA mismatch synthesis complexes provide insights into base selectivity of a B family DNA polymerase.
    Xia S; Wang J; Konigsberg WH
    J Am Chem Soc; 2013 Jan; 135(1):193-202. PubMed ID: 23214497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RB69 DNA polymerase structure, kinetics, and fidelity.
    Xia S; Konigsberg WH
    Biochemistry; 2014 May; 53(17):2752-67. PubMed ID: 24720884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.