BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 15736967)

  • 1. The interaction of human tryptase-beta with small molecule inhibitors provides new insights into the unusual functional instability and quaternary structure of the protease.
    Selwood T; Smolensky H; McCaslin DR; Schechter NM
    Biochemistry; 2005 Mar; 44(9):3580-90. PubMed ID: 15736967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of three distinct catalytic forms of human tryptase-beta: their interrelationships and relevance.
    Schechter NM; Choi EJ; Selwood T; McCaslin DR
    Biochemistry; 2007 Aug; 46(33):9615-29. PubMed ID: 17655281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potent bivalent inhibition of human tryptase-beta by a synthetic inhibitor.
    Selwood T; Elrod KC; Schechter NM
    Biol Chem; 2003 Dec; 384(12):1605-11. PubMed ID: 14719803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inactivation of human lung tryptase: evidence for a re-activatable tetrameric intermediate and active monomers.
    Addington AK; Johnson DA
    Biochemistry; 1996 Oct; 35(42):13511-8. PubMed ID: 8885830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. X-ray structures of free and leupeptin-complexed human alphaI-tryptase mutants: indication for an alpha-->beta-tryptase transition.
    Rohr KB; Selwood T; Marquardt U; Huber R; Schechter NM; Bode W; Than ME
    J Mol Biol; 2006 Mar; 357(1):195-209. PubMed ID: 16414069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human beta-tryptase: detection and characterization of the active monomer and prevention of tetramer reconstitution by protease inhibitors.
    Fukuoka Y; Schwartz LB
    Biochemistry; 2004 Aug; 43(33):10757-64. PubMed ID: 15311937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of active monomers from tetrameric human beta-tryptase.
    Fajardo I; Pejler G
    Biochem J; 2003 Feb; 369(Pt 3):603-10. PubMed ID: 12387726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of human mast cell beta-tryptase: conversion of inactive monomer to active tetramer at acid pH.
    Ren S; Sakai K; Schwartz LB
    J Immunol; 1998 May; 160(9):4561-9. PubMed ID: 9574563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural requirements and mechanism for heparin-dependent activation and tetramerization of human betaI- and betaII-tryptase.
    Hallgren J; Lindahl S; Pejler G
    J Mol Biol; 2005 Jan; 345(1):129-39. PubMed ID: 15567416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural changes associated with the spontaneous inactivation of the serine proteinase human tryptase.
    Schechter NM; Eng GY; Selwood T; McCaslin DR
    Biochemistry; 1995 Aug; 34(33):10628-38. PubMed ID: 7654717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous inactivation of human tryptase involves conformational changes consistent with conversion of the active site to a zymogen-like structure.
    Selwood T; McCaslin DR; Schechter NM
    Biochemistry; 1998 Sep; 37(38):13174-83. PubMed ID: 9748324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human beta-tryptase is a ring-like tetramer with active sites facing a central pore.
    Pereira PJ; Bergner A; Macedo-Ribeiro S; Huber R; Matschiner G; Fritz H; Sommerhoff CP; Bode W
    Nature; 1998 Mar; 392(6673):306-11. PubMed ID: 9521329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association and dissociation of the tripeptidyl-peptidase II complex as a way of regulating the enzyme activity.
    Tomkinson B
    Arch Biochem Biophys; 2000 Apr; 376(2):275-80. PubMed ID: 10775413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diverse stability and catalytic properties of human tryptase alpha and beta isoforms are mediated by residue differences at the S1 pocket.
    Selwood T; Wang ZM; McCaslin DR; Schechter NM
    Biochemistry; 2002 Mar; 41(10):3329-40. PubMed ID: 11876641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of human beta-tryptase by Bowman-Birk inhibitor derived peptides: creation of a new tri-functional inhibitor.
    Scarpi D; McBride JD; Leatherbarrow RJ
    Bioorg Med Chem; 2004 Dec; 12(23):6045-52. PubMed ID: 15519150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression and characterization of recombinant mast cell tryptase.
    Chan H; Elrod KC; Numerof RP; Sideris S; Clark JM
    Protein Expr Purif; 1999 Apr; 15(3):251-7. PubMed ID: 10092484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neutrophil myeloperoxidase is a potent and selective inhibitor of mast cell tryptase.
    Cregar L; Elrod KC; Putnam D; Moore WR
    Arch Biochem Biophys; 1999 Jun; 366(1):125-30. PubMed ID: 10334872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The B12 anti-tryptase monoclonal antibody disrupts the tetrameric structure of heparin-stabilized beta-tryptase to form monomers that are inactive at neutral pH and active at acidic pH.
    Fukuoka Y; Schwartz LB
    J Immunol; 2006 Mar; 176(5):3165-72. PubMed ID: 16493076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural requirements and mechanism for heparin-induced activation of a recombinant mouse mast cell tryptase, mouse mast cell protease-6: formation of active tryptase monomers in the presence of low molecular weight heparin.
    Hallgren J; Spillmann D; Pejler G
    J Biol Chem; 2001 Nov; 276(46):42774-81. PubMed ID: 11533057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic and thermodynamic analysis of leech-derived tryptase inhibitor interaction with bovine tryptase and bovine trypsin.
    Erba F; Fiorucci L; Sommerhoff CP; Coletta M; Ascoli F
    Biol Chem; 2000 Nov; 381(11):1117-22. PubMed ID: 11154069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.