BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 15736968)

  • 1. Structural role of glycine in amyloid fibrils formed from transmembrane alpha-helices.
    Liu W; Crocker E; Zhang W; Elliott JI; Luy B; Li H; Aimoto S; Smith SO
    Biochemistry; 2005 Mar; 44(9):3591-7. PubMed ID: 15736968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions.
    Senes A; Gerstein M; Engelman DM
    J Mol Biol; 2000 Feb; 296(3):921-36. PubMed ID: 10677292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein denaturation and aggregation: Cellular responses to denatured and aggregated proteins.
    Meredith SC
    Ann N Y Acad Sci; 2005 Dec; 1066():181-221. PubMed ID: 16533927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide and protein mimetics inhibiting amyloid beta-peptide aggregation.
    Takahashi T; Mihara H
    Acc Chem Res; 2008 Oct; 41(10):1309-18. PubMed ID: 18937396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple quantum solid-state NMR indicates a parallel, not antiparallel, organization of beta-sheets in Alzheimer's beta-amyloid fibrils.
    Antzutkin ON; Balbach JJ; Leapman RD; Rizzo NW; Reed J; Tycko R
    Proc Natl Acad Sci U S A; 2000 Nov; 97(24):13045-50. PubMed ID: 11069287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An intersheet packing interaction in A beta fibrils mapped by disulfide cross-linking.
    Shivaprasad S; Wetzel R
    Biochemistry; 2004 Dec; 43(49):15310-7. PubMed ID: 15581343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-rung model of a left-handed beta-helix for prions explains species barrier and strain variation in transmissible spongiform encephalopathies.
    Langedijk JP; Fuentes G; Boshuizen R; Bonvin AM
    J Mol Biol; 2006 Jul; 360(4):907-20. PubMed ID: 16782127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of the RGTFEGKF inhibitor on the structures of the transmembrane fragment 70-86 of glycophorin A: an all-atom molecular dynamics study.
    Li H; Luo Y; Derreumaux P; Wei G
    J Phys Chem B; 2010 Jan; 114(2):1004-9. PubMed ID: 20039663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study of amyloid fibril formation by residues 15-19 of the human calcitonin hormone: a single beta-sheet model with a small hydrophobic core.
    Haspel N; Zanuy D; Ma B; Wolfson H; Nussinov R
    J Mol Biol; 2005 Feb; 345(5):1213-27. PubMed ID: 15644216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motifs of two small residues can assist but are not sufficient to mediate transmembrane helix interactions.
    Schneider D; Engelman DM
    J Mol Biol; 2004 Oct; 343(4):799-804. PubMed ID: 15476801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The GxxxG motif: a framework for transmembrane helix-helix association.
    Russ WP; Engelman DM
    J Mol Biol; 2000 Feb; 296(3):911-9. PubMed ID: 10677291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amyloid architecture: complementary assembly of heterogeneous combinations of three or four peptides into amyloid fibrils.
    Takahashi Y; Ueno A; Mihara H
    Chembiochem; 2002 Jul; 3(7):637-42. PubMed ID: 12324997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism for the alpha-helix to beta-hairpin transition.
    Ding F; Borreguero JM; Buldyrey SV; Stanley HE; Dokholyan NV
    Proteins; 2003 Nov; 53(2):220-8. PubMed ID: 14517973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Steric zipper of the amyloid fibrils formed by residues 109-122 of the Syrian hamster prion protein.
    Lee SW; Mou Y; Lin SY; Chou FC; Tseng WH; Chen CH; Lu CY; Yu SS; Chan JC
    J Mol Biol; 2008 May; 378(5):1142-54. PubMed ID: 18423487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does the electrical activity of neurons contribute to the pathogenesis of Alzheimer's Disease?
    Concepcion GP; Padlan EA
    Med Hypotheses; 2010 Jan; 74(1):27-8. PubMed ID: 19733011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proline and glycine control protein self-organization into elastomeric or amyloid fibrils.
    Rauscher S; Baud S; Miao M; Keeley FW; Pomès R
    Structure; 2006 Nov; 14(11):1667-76. PubMed ID: 17098192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrophobic helical hairpins: design and packing interactions in membrane environments.
    Johnson RM; Heslop CL; Deber CM
    Biochemistry; 2004 Nov; 43(45):14361-9. PubMed ID: 15533040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic structures of amyloid cross-beta spines reveal varied steric zippers.
    Sawaya MR; Sambashivan S; Nelson R; Ivanova MI; Sievers SA; Apostol MI; Thompson MJ; Balbirnie M; Wiltzius JJ; McFarlane HT; Madsen AØ; Riekel C; Eisenberg D
    Nature; 2007 May; 447(7143):453-7. PubMed ID: 17468747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Higher-order molecular packing in amyloid-like fibrils constructed with linear arrangements of hydrophobic and hydrogen-bonding side-chains.
    Saiki M; Honda S; Kawasaki K; Zhou D; Kaito A; Konakahara T; Morii H
    J Mol Biol; 2005 May; 348(4):983-98. PubMed ID: 15843028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial separation of beta-sheet domains of beta-amyloid: disruption of each beta-sheet by N-methyl amino acids.
    Sciarretta KL; Boire A; Gordon DJ; Meredith SC
    Biochemistry; 2006 Aug; 45(31):9485-95. PubMed ID: 16878983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.