BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 15737335)

  • 1. Synthesis and initial characterization of FGFR3 transmembrane domain: consequences of sequence modifications.
    Iwamoto T; You M; Li E; Spangler J; Tomich JM; Hristova K
    Biochim Biophys Acta; 2005 Mar; 1668(2):240-7. PubMed ID: 15737335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and forster resonance energy transfer suggest weak interactions between fibroblast growth factor receptor 3 (FGFR3) transmembrane domains in the absence of extracellular domains and ligands.
    Li E; You M; Hristova K
    Biochemistry; 2005 Jan; 44(1):352-60. PubMed ID: 15628877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FGFR3 dimer stabilization due to a single amino acid pathogenic mutation.
    Li E; You M; Hristova K
    J Mol Biol; 2006 Feb; 356(3):600-12. PubMed ID: 16384584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies of receptor tyrosine kinase transmembrane domain interactions: the EmEx-FRET method.
    Merzlyakov M; Chen L; Hristova K
    J Membr Biol; 2007 Feb; 215(2-3):93-103. PubMed ID: 17565424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of membrane protein interactions in plasma membrane derived vesicles with quantitative imaging Förster resonance energy transfer.
    Sarabipour S; Del Piccolo N; Hristova K
    Acc Chem Res; 2015 Aug; 48(8):2262-9. PubMed ID: 26244699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of receptor tyrosine kinase transmembrane domains in cell signaling and human pathologies.
    Li E; Hristova K
    Biochemistry; 2006 May; 45(20):6241-51. PubMed ID: 16700535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The strong dimerization of the transmembrane domain of the fibroblast growth factor receptor (FGFR) is modulated by C-terminal juxtamembrane residues.
    Peng WC; Lin X; Torres J
    Protein Sci; 2009 Feb; 18(2):450-9. PubMed ID: 19165726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific inhibition of a pathogenic receptor tyrosine kinase by its transmembrane domain.
    He L; Shobnam N; Hristova K
    Biochim Biophys Acta; 2011 Jan; 1808(1):253-9. PubMed ID: 20713021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMR-based approach to measure the free energy of transmembrane helix-helix interactions.
    Mineev KS; Lesovoy DM; Usmanova DR; Goncharuk SA; Shulepko MA; Lyukmanova EN; Kirpichnikov MP; Bocharov EV; Arseniev AS
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):164-72. PubMed ID: 24036227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The achondroplasia mutation does not alter the dimerization energetics of the fibroblast growth factor receptor 3 transmembrane domain.
    You M; Li E; Hristova K
    Biochemistry; 2006 May; 45(17):5551-6. PubMed ID: 16634636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of juxtamembrane and transmembrane domains in the mechanism of natriuretic peptide receptor A activation.
    Parat M; Blanchet J; De Léan A
    Biochemistry; 2010 Jun; 49(22):4601-10. PubMed ID: 20214400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The composition rather than position of polar residues (QxxS) drives aspartate receptor transmembrane domain dimerization in vivo.
    Sal-Man N; Gerber D; Shai Y
    Biochemistry; 2004 Mar; 43(8):2309-13. PubMed ID: 14979727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear trafficking of FGFR1: a role for the transmembrane domain.
    Myers JM; Martins GG; Ostrowski J; Stachowiak MK
    J Cell Biochem; 2003 Apr; 88(6):1273-91. PubMed ID: 12647309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput selection of transmembrane sequences that enhance receptor tyrosine kinase activation.
    He L; Hoffmann AR; Serrano C; Hristova K; Wimley WC
    J Mol Biol; 2011 Sep; 412(1):43-54. PubMed ID: 21767549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polar residue tagging of transmembrane peptides.
    Melnyk RA; Partridge AW; Yip J; Wu Y; Goto NK; Deber CM
    Biopolymers; 2003; 71(6):675-85. PubMed ID: 14991677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of dimerization efficiency of transmembrane domains in activation of fibroblast growth factor receptor 3.
    Volynsky PE; Polyansky AA; Fakhrutdinova GN; Bocharov EV; Efremov RG
    J Am Chem Soc; 2013 Jun; 135(22):8105-8. PubMed ID: 23679838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arginine mutations within a transmembrane domain of Tar, an Escherichia coli aspartate receptor, can drive homodimer dissociation and heterodimer association in vivo.
    Sal-Man N; Shai Y
    Biochem J; 2005 Jan; 385(Pt 1):29-36. PubMed ID: 15330757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retention of native-like oligomerization states in transmembrane segment peptides: application to the Escherichia coli aspartate receptor.
    Melnyk RA; Partridge AW; Deber CM
    Biochemistry; 2001 Sep; 40(37):11106-13. PubMed ID: 11551208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FGFR3 unliganded dimer stabilization by the juxtamembrane domain.
    Sarabipour S; Hristova K
    J Mol Biol; 2015 Apr; 427(8):1705-14. PubMed ID: 25688803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of individual amino acids in the dimerization of CR4 and ACR4 transmembrane domains.
    Stokes KD; Rao AG
    Arch Biochem Biophys; 2010 Oct; 502(2):104-11. PubMed ID: 20655866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.