These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 15737383)

  • 1. A theoretical model describing the transfer characteristics of a membrane hydrophone and validation.
    Gélat PN; Preston RC; Hurrell A
    Ultrasonics; 2005 Mar; 43(5):331-41. PubMed ID: 15737383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane hydrophone phase characteristics through nonlinear acoustics measurements.
    Bloomfield PE; Gandhi G; Lewin PA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Nov; 58(11):2418-37. PubMed ID: 22083775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance optimization of plate-mode sensors with bi-layered structure.
    Fan L; Zhang SY; Cheng LP; Zhang H
    Ultrasonics; 2006 Dec; 44 Suppl 1():e917-21. PubMed ID: 16793105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excitation of acoustic waves from cylindrical polyvinylidene fluoride (PVDF) film confined in a concentric wall.
    Toda M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1653-9. PubMed ID: 18986955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theory and operation of 2-D array piezoelectric micromachined ultrasound transducers.
    Dausch DE; Castellucci JB; Chou DR; von Ramm OT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Nov; 55(11):2484-92. PubMed ID: 19049928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of finite aperture and frequency response of ultrasonic hydrophone probes on the determination of acoustic output.
    Radulescu EG; Lewin PA; Wójcik J; Nowicki A; Berger WA
    Ultrasonics; 2004 Apr; 42(1-9):367-72. PubMed ID: 15047313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a miniaturized piezoelectric ultrasonic transducer.
    Li T; Chen Y; Ma J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):649-59. PubMed ID: 19411223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Broadband attenuation and nonlinear propagation in biological fluids: an experimental facility and measurements.
    Verma PK; Humphrey VF; Duck FA
    Ultrasound Med Biol; 2005 Dec; 31(12):1723-33. PubMed ID: 16344135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Are hydrophones of diameter 0.5 mm small enough to characterise diagnostic ultrasound equipment?
    Smith RA
    Phys Med Biol; 1989 Nov; 34(11):1593-607. PubMed ID: 2685834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved measurement of acoustic output using complex deconvolution of hydrophone sensitivity.
    Wear KA; Gammell PM; Maruvada S; Liu Y; Harris GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jan; 61(1):62-75. PubMed ID: 24402896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmitting electric energy through a closed elastic wall by acoustic waves and piezoelectric transducers.
    Yang Z; Guo S; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1380-6. PubMed ID: 18599426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure.
    Morris P; Hurrell A; Shaw A; Zhang E; Beard P
    J Acoust Soc Am; 2009 Jun; 125(6):3611-22. PubMed ID: 19507943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic wave transmission through piezoelectric structured materials.
    Lam M; Le Clézio E; Amorín H; Algueró M; Holc J; Kosec M; Hladky-Hennion AC; Feuillard G
    Ultrasonics; 2009 May; 49(4-5):424-31. PubMed ID: 19128815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: a comparison with PVDF needle and membrane hydrophones.
    Beard PC; Hurrell AM; Mills TN
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):256-64. PubMed ID: 18238538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Broadband PVDF membrane hydrophone for comparisons of hydrophone calibration methods up to 140 MHz.
    Wilkens V; Molkenstruck W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Sep; 54(9):1784-91. PubMed ID: 17941384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity of a Lamb wave sensor with 2 microm AlN membrane.
    Duhamel R; Robert L; Jia H; Li F; Lardet-Vieudrin F; Manceau JF; Bastien F
    Ultrasonics; 2006 Dec; 44 Suppl 1():e893-7. PubMed ID: 16844161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental study of underwater transmission characteristics of high-frequency 30 MHz polyurea ultrasonic transducer.
    Nakazawa M; Aoyagi T; Tabaru M; Nakamura K; Ueha S
    Ultrasonics; 2014 Feb; 54(2):526-36. PubMed ID: 24035608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency response of PVDF needle-type hydrophones.
    Fay B; Ludwig G; Lankjaer C; Lewin PA
    Ultrasound Med Biol; 1994; 20(4):361-6. PubMed ID: 8085292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of a fibre-optic hydrophone in measuring acoustic parameters of high power hyperthermia transducers.
    Chan HL; Chiang KS; Price DC; Gardner JL; Brinch J
    Phys Med Biol; 1989 Nov; 34(11):1609-22. PubMed ID: 2587628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of spatial polarization distribution on spot poled PVDF membrane hydrophone performance.
    Fay B; Lewin PA; Ludwig G; Sessler GM; Yang G
    Ultrasound Med Biol; 1992; 18(6-7):625-35. PubMed ID: 1413274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.