These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 15737711)

  • 21. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration.
    Damgaard A; Riber C; Fruergaard T; Hulgaard T; Christensen TH
    Waste Manag; 2010 Jul; 30(7):1244-50. PubMed ID: 20378326
    [TBL] [Abstract][Full Text] [Related]  

  • 22. LCA: a decision support tool for environmental assessment of MSW management systems.
    Liamsanguan C; Gheewala SH
    J Environ Manage; 2008 Apr; 87(1):132-8. PubMed ID: 17350748
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of the environmental sustainability of different waste-to-energy plant configurations.
    Lombardi L; Carnevale EA
    Waste Manag; 2018 Mar; 73():232-246. PubMed ID: 28728789
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential.
    Roberts KG; Gloy BA; Joseph S; Scott NR; Lehmann J
    Environ Sci Technol; 2010 Jan; 44(2):827-33. PubMed ID: 20030368
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cogeneration from thermal treatment of selected municipal solid wastes. A stoichiometric model building for the case study on Palermo.
    Lo Mastro F; Mistretta M
    Waste Manag; 2004; 24(3):309-17. PubMed ID: 15016419
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Energy recovery from waste incineration: assessing the importance of district heating networks.
    Fruergaard T; Christensen TH; Astrup T
    Waste Manag; 2010 Jul; 30(7):1264-72. PubMed ID: 20385481
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Energy implications of mechanical and mechanical-biological treatment compared to direct waste-to-energy.
    Cimpan C; Wenzel H
    Waste Manag; 2013 Jul; 33(7):1648-58. PubMed ID: 23660494
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel and innovative pyrolysis and gasification technologies for energy efficient and environmentally sound MSW disposal.
    Malkow T
    Waste Manag; 2004; 24(1):53-79. PubMed ID: 14672726
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of potential RDF resources from solid waste and their energy values in the largest industrial city of Korea.
    Dong TT; Lee BK
    Waste Manag; 2009 May; 29(5):1725-31. PubMed ID: 19136242
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An environmentally sustainable decision model for urban solid waste management.
    Costi P; Minciardi R; Robba M; Rovatti M; Sacile R
    Waste Manag; 2004; 24(3):277-95. PubMed ID: 15016417
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Co-gasification of solid waste and lignite - a case study for Western Macedonia.
    Koukouzas N; Katsiadakis A; Karlopoulos E; Kakaras E
    Waste Manag; 2008; 28(7):1263-75. PubMed ID: 17631995
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A technical, economic, and environmental analysis of energy production from newspaper in Ireland.
    Murphy JD; Power N
    Waste Manag; 2007; 27(2):177-92. PubMed ID: 16513338
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The use of LCA in selecting the best MSW management system.
    De Feo G; Malvano C
    Waste Manag; 2009 Jun; 29(6):1901-15. PubMed ID: 19168344
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessing the environmental burdens of anaerobic digestion in comparison to alternative options for managing the biodegradable fraction of municipal solid wastes.
    Haight M
    Water Sci Technol; 2005; 52(1-2):553-9. PubMed ID: 16180477
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative environmental analysis of waste brominated plastic thermal treatments.
    Bientinesi M; Petarca L
    Waste Manag; 2009 Mar; 29(3):1095-102. PubMed ID: 18829288
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Economic and environmental review of Waste-to-Energy systems for municipal solid waste management in medium and small municipalities.
    Fernández-González JM; Grindlay AL; Serrano-Bernardo F; Rodríguez-Rojas MI; Zamorano M
    Waste Manag; 2017 Sep; 67():360-374. PubMed ID: 28501263
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A life cycle assessment of environmental performances of two combustion- and gasification-based waste-to-energy technologies.
    Arena U; Ardolino F; Di Gregorio F
    Waste Manag; 2015 Jul; 41():60-74. PubMed ID: 25899036
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Is it better to burn or bury waste for clean electricity generation?
    Kaplan PO; Decarolis J; Thorneloe S
    Environ Sci Technol; 2009 Mar; 43(6):1711-7. PubMed ID: 19368161
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Technoeconomic aspects of alternative municipal solid wastes treatment methods.
    Economopoulos AP
    Waste Manag; 2010 Apr; 30(4):707-15. PubMed ID: 20018502
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Perspectives for pilot scale study of RDF in Istanbul, Turkey.
    Kara M; Günay E; Tabak Y; Yildiz S
    Waste Manag; 2009 Dec; 29(12):2976-82. PubMed ID: 19709868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.