These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 15737721)

  • 1. Nickel and cobalt recycling from lithium-ion batteries by electrochemical processes.
    Lupi C; Pasquali M; Dell'era A
    Waste Manag; 2005; 25(2):215-20. PubMed ID: 15737721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant.
    Li L; Ge J; Wu F; Chen R; Chen S; Wu B
    J Hazard Mater; 2010 Apr; 176(1-3):288-93. PubMed ID: 19954882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries.
    Sun L; Qiu K
    Waste Manag; 2012 Aug; 32(8):1575-82. PubMed ID: 22534072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries.
    Sun YK; Myung ST; Kim MH; Prakash J; Amine K
    J Am Chem Soc; 2005 Sep; 127(38):13411-8. PubMed ID: 16173775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization and leaching of NiCd and NiMH spent batteries for the recovery of metals.
    Pietrelli L; Bellomo B; Fontana D; Montereali M
    Waste Manag; 2005; 25(2):221-6. PubMed ID: 15737722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A combined recovery process of metals in spent lithium-ion batteries.
    Li J; Shi P; Wang Z; Chen Y; Chang CC
    Chemosphere; 2009 Nov; 77(8):1132-6. PubMed ID: 19775724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries.
    Sun L; Qiu K
    J Hazard Mater; 2011 Oct; 194():378-84. PubMed ID: 21872390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of aqueous two-phase systems for the development of a new method of cobalt(II), iron(III) and nickel(II) extraction: a green chemistry approach.
    PatrĂ­cio Pda R; Mesquita MC; da Silva LH; da Silva MC
    J Hazard Mater; 2011 Oct; 193():311-8. PubMed ID: 21864977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel process for recovering valuable metals from waste nickel-cadmium batteries.
    Huang K; Li J; Xu Z
    Environ Sci Technol; 2009 Dec; 43(23):8974-8. PubMed ID: 19943675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries.
    Chen X; Chen Y; Zhou T; Liu D; Hu H; Fan S
    Waste Manag; 2015 Apr; 38():349-56. PubMed ID: 25619126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical characterisation of spent rechargeable batteries.
    Vassura I; Morselli L; Bernardi E; Passarini F
    Waste Manag; 2009 Aug; 29(8):2332-5. PubMed ID: 19423325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extraction and separation of Co(II) and Ni(II) from acidic sulfate solutions using Aliquat 336.
    Nayl AA
    J Hazard Mater; 2010 Jan; 173(1-3):223-30. PubMed ID: 19783369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recycling of spent nickel-cadmium batteries based on bioleaching process.
    Zhu N; Zhang L; Li C; Cai C
    Waste Manag; 2003; 23(8):703-8. PubMed ID: 14522188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stepwise recycling of valuable metals from Ni-rich cathode material of spent lithium-ion batteries.
    Yang Y; Lei S; Song S; Sun W; Wang L
    Waste Manag; 2020 Feb; 102():131-138. PubMed ID: 31677520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrometallurgical process for the recovery of metal values from spent lithium-ion batteries in citric acid media.
    Chen X; Zhou T
    Waste Manag Res; 2014 Nov; 32(11):1083-93. PubMed ID: 25378255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A material flow of lithium batteries in Taiwan.
    Chang TC; You SJ; Yu BS; Yao KF
    J Hazard Mater; 2009 Apr; 163(2-3):910-5. PubMed ID: 18723278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical process for electrode material of spent lithium ion batteries.
    Prabaharan G; Barik SP; Kumar N; Kumar L
    Waste Manag; 2017 Oct; 68():527-533. PubMed ID: 28711181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recovery of rare metal compounds from nickel-metal hydride battery waste and their application to CH4 dry reforming catalyst.
    Kanamori T; Matsuda M; Miyake M
    J Hazard Mater; 2009 Sep; 169(1-3):240-5. PubMed ID: 19395161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leaching of electrodic powders from lithium ion batteries: Optimization of operating conditions and effect of physical pretreatment for waste fraction retrieval.
    Pagnanelli F; Moscardini E; Altimari P; Abo Atia T; Toro L
    Waste Manag; 2017 Feb; 60():706-715. PubMed ID: 27940079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.