BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 15737919)

  • 21. Phylogenetic relationships and divergence times among New World monkeys (Platyrrhini, Primates).
    Opazo JC; Wildman DE; Prychitko T; Johnson RM; Goodman M
    Mol Phylogenet Evol; 2006 Jul; 40(1):274-80. PubMed ID: 16698289
    [TBL] [Abstract][Full Text] [Related]  

  • 22. HERV-W group evolutionary history in non-human primates: characterization of ERV-W orthologs in Catarrhini and related ERV groups in Platyrrhini.
    Grandi N; Cadeddu M; Blomberg J; Mayer J; Tramontano E
    BMC Evol Biol; 2018 Jan; 18(1):6. PubMed ID: 29351742
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular evolution of α4 integrin binding site to lentiviral envelope proteins in new world primates.
    Darc M; Schrago CG; Soares EA; Pissinatti A; Menezes AN; Soares MA; Seuánez HN
    Infect Genet Evol; 2012 Oct; 12(7):1501-7. PubMed ID: 22691367
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sequence evolution, processing, and posttranslational modification of zonadhesin D domains in primates, as inferred from cDNA data.
    Herlyn H; Zischler H
    Gene; 2005 Dec; 362():85-97. PubMed ID: 16185823
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular variation in AVP and AVPR1a in New World monkeys (Primates, Platyrrhini): evolution and implications for social monogamy.
    Ren D; Chin KR; French JA
    PLoS One; 2014; 9(10):e111638. PubMed ID: 25360668
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemokine (C-C motif) receptor 5-using envelopes predominate in dual/mixed-tropic HIV from the plasma of drug-naive individuals.
    Irlbeck DM; Amrine-Madsen H; Kitrinos KM; Labranche CC; Demarest JF
    AIDS; 2008 Jul; 22(12):1425-31. PubMed ID: 18614865
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Size as a line of least evolutionary resistance: diet and adaptive morphological radiation in New World monkeys.
    Marroig G; Cheverud JM
    Evolution; 2005 May; 59(5):1128-42. PubMed ID: 16136810
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular characterization of the env gene of two CCR5/CXCR4-independent human immunodeficiency 2 primary isolates.
    Santos-Costa Q; Parreira R; Moniz-Pereira J; Azevedo-Pereira JM
    J Med Virol; 2009 Nov; 81(11):1869-81. PubMed ID: 19774680
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adaptive evolution of primate TRIM5alpha, a gene restricting HIV-1 infection.
    Liu HL; Wang YQ; Liao CH; Kuang YQ; Zheng YT; Su B
    Gene; 2005 Dec; 362():109-16. PubMed ID: 16226405
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Species tree estimation for a deep phylogenetic divergence in the New World monkeys (Primates: Platyrrhini).
    Perez SI; Klaczko J; dos Reis SF
    Mol Phylogenet Evol; 2012 Nov; 65(2):621-30. PubMed ID: 22841656
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phylogeny of neotropical monkeys: the interplay of morphological, molecular, and parasitological data.
    Hugot JP
    Mol Phylogenet Evol; 1998 Jun; 9(3):408-13. PubMed ID: 9667989
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Positive selection during the diversification of class I vomeronasal receptor-like (V1RL) genes, putative pheromone receptor genes, in human and primate evolution.
    Mundy NI; Cook S
    Mol Biol Evol; 2003 Nov; 20(11):1805-10. PubMed ID: 12832635
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DNA Polymerase Sequences of New World Monkey Cytomegaloviruses: Another Molecular Marker with Which To Infer Platyrrhini Systematics.
    James S; Donato D; Pouliquen JF; Ruiz-García M; Lavergne A; Lacoste V
    J Virol; 2018 Sep; 92(18):. PubMed ID: 29976674
    [TBL] [Abstract][Full Text] [Related]  

  • 34. JM4 is a four-transmembrane protein binding to the CCR5 receptor.
    Schweneker M; Bachmann AS; Moelling K
    FEBS Lett; 2005 Mar; 579(7):1751-8. PubMed ID: 15757671
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mhc-DRB genes of platyrrhine primates.
    Trtková K; Kupfermann H; Grahovac B; Mayer WE; O'hUigin C; Tichy H; Bontrop R; Klein J
    Immunogenetics; 1993; 38(3):210-22. PubMed ID: 8505064
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The molecular cloning and functional expression of the dog CCR5.
    Mosley M; Pullen S; Botham A; Gray A; Napier C; Mansfield R; Holbrook M
    Vet Immunol Immunopathol; 2006 Oct; 113(3-4):415-20. PubMed ID: 16806494
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of a postendocytic sorting sequence in CCR5.
    Delhaye M; Gravot A; Ayinde D; Niedergang F; Alizon M; Brelot A
    Mol Pharmacol; 2007 Dec; 72(6):1497-507. PubMed ID: 17855654
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Complete knockdown of CCR5 by lentiviral vector-expressed siRNAs and protection of transgenic macrophages against HIV-1 infection.
    Anderson J; Akkina R
    Gene Ther; 2007 Sep; 14(17):1287-97. PubMed ID: 17597795
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolution of human and non-human primate CC chemokine receptor 5 gene and mRNA. Potential roles for haplotype and mRNA diversity, differential haplotype-specific transcriptional activity, and altered transcription factor binding to polymorphic nucleotides in the pathogenesis of HIV-1 and simian immunodeficiency virus.
    Mummidi S; Bamshad M; Ahuja SS; Gonzalez E; Feuillet PM; Begum K; Galvis MC; Kostecki V; Valente AJ; Murthy KK; Haro L; Dolan MJ; Allan JS; Ahuja SK
    J Biol Chem; 2000 Jun; 275(25):18946-61. PubMed ID: 10747879
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic variations in CC chemokine receptors and hypertension.
    Zhang M; Ardlie K; Wacholder S; Welch R; Chanock S; O'Brien TR
    Am J Hypertens; 2006 Jan; 19(1):67-72. PubMed ID: 16461193
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.