These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 15738101)

  • 1. Role played by vagal chemical sensors in the hepato-portal region and duodeno-intestinal canal: an electrophysiological study.
    Niijima A; Torii K; Uneyama H
    Chem Senses; 2005 Jan; 30 Suppl 1():i178-9. PubMed ID: 15738101
    [No Abstract]   [Full Text] [Related]  

  • 2. Hepato-vagal pathway associated with nicotine's anorectic effect in the rat.
    Niijima A; Miyata G; Sato T; Meguid MM
    Auton Neurosci; 2001 Oct; 93(1-2):48-55. PubMed ID: 11695706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino acid sensors sensitive to alanine and leucine exist in the hepato-portal system in the rat.
    Tanaka K; Inoue S; Nagase H; Takamura Y; Niijima A
    J Auton Nerv Syst; 1990 Sep; 31(1):41-6. PubMed ID: 2262665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An electrophysiological study on amino acid sensors in the hepato-portal system in the rat.
    Niijima A; Meguid MM
    Obes Res; 1995 Dec; 3 Suppl 5():741S-745S. PubMed ID: 8653557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vagal afferent neurons projecting to the stomach and small intestine exhibit multiple N-methyl-D-aspartate receptor subunit phenotypes.
    Czaja K; Ritter RC; Burns GA
    Brain Res; 2006 Nov; 1119(1):86-93. PubMed ID: 16989781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of hepatic, intrahepatic and hepatoenteral nerves in the regulation of carbohydrate metabolism and hemodynamics of the liver and intestine.
    Jungermann K; Stümpel F
    Hepatogastroenterology; 1999 Jun; 46 Suppl 2():1414-7. PubMed ID: 10431702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Central neural activation of hyperdynamic circulation in portal hypertensive rats depends on vagal afferent nerves.
    Liu H; Schuelert N; McDougall JJ; Lee SS
    Gut; 2008 Jul; 57(7):966-73. PubMed ID: 18270244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic effects of portal vein sensing.
    Mithieux G
    Diabetes Obes Metab; 2014 Sep; 16 Suppl 1():56-60. PubMed ID: 25200297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced CCK-induced Fos expression in the hindbrain, nodose ganglia, and enteric neurons of rats lacking CCK-1 receptors.
    Covasa M; Ritter RC
    Brain Res; 2005 Jul; 1051(1-2):155-63. PubMed ID: 16005445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. D-glucose modulates synaptic transmission from the central terminals of vagal afferent fibers.
    Wan S; Browning KN
    Am J Physiol Gastrointest Liver Physiol; 2008 Mar; 294(3):G757-63. PubMed ID: 18202107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A sweet spot for the bariatric surgeon.
    Perez-Tilve D; D'Alessio DA; Tschöp MH
    Cell Metab; 2008 Sep; 8(3):177-9. PubMed ID: 18762016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Comparative study of the speed of absorption of amino acids from the intestines in rats fed casein and egg albumin].
    Chernikov MP; Usacheva NT
    Vopr Pitan; 1972; 31(3):3-8. PubMed ID: 5042213
    [No Abstract]   [Full Text] [Related]  

  • 13. Neurochemical and morphological phenotypes of vagal afferent neurons innervating the adult mouse jejunum.
    Tan LL; Bornstein JC; Anderson CR
    Neurogastroenterol Motil; 2009 Sep; 21(9):994-1001. PubMed ID: 19413682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The vagal afferents discharge and myoelectrical activity in the gastric hyperalgesia model in rats.
    Krolczyk G; Gil K; Zurowski D; Jung A; Thor PJ
    J Physiol Pharmacol; 2008 Dec; 59(4):707-16. PubMed ID: 19212005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 5-HT 3 receptors mediate the time-dependent vagal afferent modulation of nociception during chronic food allergen-sensitized visceral hyperalgesia in rats.
    Chen S; Li J; Zhang L; Dong X; Gao W; Mo J; Chen H; Xiao S; Li Y
    Neurogastroenterol Motil; 2009 Nov; 21(11):1222-e113. PubMed ID: 19558425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acids in the rat intestinal lumen regulate their own absorption from a distant intestinal site.
    Mourad FH; Barada KA; Khoury C; Hamdi T; Saadé NE; Nassar CF
    Am J Physiol Gastrointest Liver Physiol; 2009 Aug; 297(2):G292-8. PubMed ID: 19541927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peripheral signals in the control of feeding behavior.
    Friedman MI; Horn CC; Ji H
    Chem Senses; 2005 Jan; 30 Suppl 1():i182-3. PubMed ID: 15738103
    [No Abstract]   [Full Text] [Related]  

  • 18. Involvement of forebrain glucose-monitoring neurons in taste information processing: electrophysiological and behavioral studies.
    Karádi Z; Lukáts B; Papp S; Szalay C; Egyed R; Lénárd L; Takács G
    Chem Senses; 2005 Jan; 30 Suppl 1():i168-9. PubMed ID: 15738095
    [No Abstract]   [Full Text] [Related]  

  • 19. Existence of NO-triggered vagal afferent activation in the rat gastric mucosa.
    Uneyama H; Niijima A; Kitamura A; Torii K
    Life Sci; 2009 Dec; 85(23-26):782-7. PubMed ID: 19874830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of cholecystokinin (CCK 1) and serotonin (5-HT 3) receptors increases the discharge of pancreatic vagal afferents.
    Mussa BM; Sartor DM; Verberne AJ
    Eur J Pharmacol; 2008 Dec; 601(1-3):198-206. PubMed ID: 19026634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.