BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 15738631)

  • 21. Hypouricemic effects of Mesona procumbens Hemsl. through modulating xanthine oxidase activity in vitro and in vivo.
    Jhang JJ; Ong JW; Lu CC; Hsu CL; Lin JH; Liao JW; Yen GC
    Food Funct; 2016 Oct; 7(10):4239-4246. PubMed ID: 27713960
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protective effects of Rhizoma smilacis glabrae extracts on potassium oxonate- and monosodium urate-induced hyperuricemia and gout in mice.
    Liang G; Nie Y; Chang Y; Zeng S; Liang C; Zheng X; Xiao D; Zhan S; Zheng Q
    Phytomedicine; 2019 Jun; 59():152772. PubMed ID: 31005813
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of the phenethyl ester of caffeic acid (CAPE) in the inhibition of rat lung cyclooxygenase activity by propolis.
    Rossi A; Longo R; Russo A; Borrelli F; Sautebin L
    Fitoterapia; 2002 Nov; 73 Suppl 1():S30-7. PubMed ID: 12495707
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lithospermic acid as a novel xanthine oxidase inhibitor has anti-inflammatory and hypouricemic effects in rats.
    Liu X; Chen R; Shang Y; Jiao B; Huang C
    Chem Biol Interact; 2008 Nov; 176(2-3):137-42. PubMed ID: 18694741
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibitory activities of propolis and its promising component, caffeic acid phenethyl ester, against amyloidogenesis of human transthyretin.
    Yokoyama T; Kosaka Y; Mizuguchi M
    J Med Chem; 2014 Nov; 57(21):8928-35. PubMed ID: 25314129
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comprehensive analysis of mechanism underlying hypouricemic effect of glucosyl hesperidin.
    Ota-Kontani A; Hirata H; Ogura M; Tsuchiya Y; Harada-Shiba M
    Biochem Biophys Res Commun; 2020 Jan; 521(4):861-867. PubMed ID: 31711647
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis and structure-activity relationships of 1-phenylpyrazoles as xanthine oxidase inhibitors.
    Ishibuchi S; Morimoto H; Oe T; Ikebe T; Inoue H; Fukunari A; Kamezawa M; Yamada I; Naka Y
    Bioorg Med Chem Lett; 2001 Apr; 11(7):879-82. PubMed ID: 11294382
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antiviral activity and mode of action of propolis extracts and selected compounds.
    Schnitzler P; Neuner A; Nolkemper S; Zundel C; Nowack H; Sensch KH; Reichling J
    Phytother Res; 2010 Jan; 24 Suppl 1():S20-8. PubMed ID: 19472427
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design, synthesis and biological evaluation of 1-alkyl-5/6-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)-1H-indole-3-carbonitriles as novel xanthine oxidase inhibitors.
    Gao J; Liu X; Zhang B; Mao Q; Zhang Z; Zou Q; Dai X; Wang S
    Eur J Med Chem; 2020 Mar; 190():112077. PubMed ID: 32014678
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioactivity and chemical synthesis of caffeic acid phenethyl ester and its derivatives.
    Zhang P; Tang Y; Li NG; Zhu Y; Duan JA
    Molecules; 2014 Oct; 19(10):16458-76. PubMed ID: 25314606
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of extracts of leaves from Sparattosperma leucanthum on hyperuricemia and gouty arthritis.
    Lemos Lima Rde C; Ferrari FC; de Souza MR; de Sá Pereira BM; de Paula CA; Saúde-Guimarães DA
    J Ethnopharmacol; 2015 Feb; 161():194-9. PubMed ID: 25500302
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Caffeic acid phenethyl ester (CAPE) analogues: potent nitric oxide inhibitors from the Netherlands propolis.
    Nagaoka T; Banskota AH; Tezuka Y; Midorikawa K; Matsushige K; Kadota S
    Biol Pharm Bull; 2003 Apr; 26(4):487-91. PubMed ID: 12673030
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A potential therapeutic agent for the treatment of hyperuricemia and gout: 3,4-Dihydroxy-5-nitrobenzaldehyde phenylthiosemicarbazide.
    Yu X; Ren S; Zhou J; Liao Y; Huang Y; Dong H
    Eur J Pharm Sci; 2024 Jul; 198():106778. PubMed ID: 38653341
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of the free phenolic profile of Adlay bran by UPLC-QTOF-MS/MS and inhibitory mechanisms of phenolic acids against xanthine oxidase.
    Lin L; Yang Q; Zhao K; Zhao M
    Food Chem; 2018 Jul; 253():108-118. PubMed ID: 29502809
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of propolis from the continental and Adriatic regions of Croatia.
    Kosalec I; Bakmaz M; Pepeljnjak S
    Acta Pharm; 2003 Dec; 53(4):275-85. PubMed ID: 14769234
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The inhibitory effect of propolis and caffeic acid phenethyl ester on cyclooxygenase activity in J774 macrophages.
    Rossi A; Ligresti A; Longo R; Russo A; Borrelli F; Sautebin L
    Phytomedicine; 2002 Sep; 9(6):530-5. PubMed ID: 12403162
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hypouricemic action of selected flavonoids in mice: structure-activity relationships.
    Mo SF; Zhou F; Lv YZ; Hu QH; Zhang DM; Kong LD
    Biol Pharm Bull; 2007 Aug; 30(8):1551-6. PubMed ID: 17666819
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of cassia oil on serum and hepatic uric acid levels in oxonate-induced mice and xanthine dehydrogenase and xanthine oxidase activities in mouse liver.
    Zhao X; Zhu JX; Mo SF; Pan Y; Kong LD
    J Ethnopharmacol; 2006 Feb; 103(3):357-65. PubMed ID: 16182482
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reducing effect of mangiferin on serum uric acid levels in mice.
    Niu Y; Lu W; Gao L; Lin H; Liu X; Li L
    Pharm Biol; 2012 Sep; 50(9):1177-82. PubMed ID: 22881143
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of ChondroT on potassium Oxonate-induced Hyperuricemic mice: downregulation of xanthine oxidase and urate transporter 1.
    Oh DR; Kim JR; Choi CY; Choi CH; Na CS; Kang BY; Kim SJ; Kim YR
    BMC Complement Altern Med; 2019 Jan; 19(1):10. PubMed ID: 30621705
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.