BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 15738711)

  • 1. Minimally invasive extraction of dermal interstitial fluid for glucose monitoring using microneedles.
    Wang PM; Cornwell M; Prausnitz MR
    Diabetes Technol Ther; 2005 Feb; 7(1):131-41. PubMed ID: 15738711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of glucose levels in dermal interstitial fluid and finger capillary blood.
    Stout PJ; Peled N; Erickson BJ; Hilgers ME; Racchini JR; Hoegh TB
    Diabetes Technol Ther; 2001; 3(1):81-90. PubMed ID: 11469711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of trueness of a glucose monitor using interstitial fluid and whole blood as specimen matrix.
    Vesper HW; Wang PM; Archibold E; Prausnitz MR; Myers GL
    Diabetes Technol Ther; 2006 Feb; 8(1):76-80. PubMed ID: 16472053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic Characterization of Dermal Interstitial Fluid Extracted Using a Novel Microneedle-Assisted Technique.
    Tran BQ; Miller PR; Taylor RM; Boyd G; Mach PM; Rosenzweig CN; Baca JT; Polsky R; Glaros T
    J Proteome Res; 2018 Jan; 17(1):479-485. PubMed ID: 29172549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Therapeutic Drug Monitoring of Vancomycin in Dermal Interstitial Fluid Using Dissolving Microneedles.
    Ito Y; Inagaki Y; Kobuchi S; Takada K; Sakaeda T
    Int J Med Sci; 2016; 13(4):271-6. PubMed ID: 27076783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of glucose area under the curve using minimally invasive interstitial fluid extraction technology: evaluation of glucose monitoring concepts without blood sampling.
    Sato T; Okada S; Hagino K; Asakura Y; Kikkawa Y; Kojima J; Watanabe T; Maekawa Y; Isobe K; Koike R; Nakajima H; Asano K
    Diabetes Technol Ther; 2011 Dec; 13(12):1194-200. PubMed ID: 21770766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel approach to mitigating the physiological lag between blood and interstitial fluid glucose measurements.
    Stout PJ; Racchini JR; Hilgers ME
    Diabetes Technol Ther; 2004 Oct; 6(5):635-44. PubMed ID: 15628817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of dissolving microneedles to glucose monitoring through dermal interstitial fluid.
    Ito Y; Taniguchi M; Hayashi A; Anai M; Morita S; Ko E; Yoshimoto N; Yoshii Y; Kobuchi S; Sakaeda T; Takada K
    Biol Pharm Bull; 2014; 37(11):1776-81. PubMed ID: 25366483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porous Colorimetric Microneedles for Minimally Invasive Rapid Glucose Sampling and Sensing in Skin Interstitial Fluid.
    Zeng Q; Xu M; Hu W; Cao W; Zhan Y; Zhang Y; Wang Q; Ma T
    Biosensors (Basel); 2023 May; 13(5):. PubMed ID: 37232898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Wearable Touch-Activated Device Integrated with Hollow Microneedles for Continuous Sampling and Sensing of Dermal Interstitial Fluid.
    Abbasiasl T; Mirlou F; Mirzajani H; Bathaei MJ; Istif E; Shomalizadeh N; Cebecioğlu RE; Özkahraman EE; Yener UC; Beker L
    Adv Mater; 2024 Jan; 36(2):e2304704. PubMed ID: 37709513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous glucose monitoring with glucose sensors: calibration and assessment criteria.
    Lodwig V; Heinemann L;
    Diabetes Technol Ther; 2003; 5(4):572-86. PubMed ID: 14511412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid paper based colorimetric detection of glucose using a hollow microneedle device.
    Nicholas D; Logan KA; Sheng Y; Gao J; Farrell S; Dixon D; Callan B; McHale AP; Callan JF
    Int J Pharm; 2018 Aug; 547(1-2):244-249. PubMed ID: 29879505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osmosis-Powered Hydrogel Microneedles for Microliters of Skin Interstitial Fluid Extraction within Minutes.
    Zheng M; Wang Z; Chang H; Wang L; Chew SWT; Lio DCS; Cui M; Liu L; Tee BCK; Xu C
    Adv Healthc Mater; 2020 May; 9(10):e1901683. PubMed ID: 32351042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Swellable PVA/PVP hydrogel microneedle patches for the extraction of interstitial skin fluid toward minimally invasive monitoring of blood glucose level.
    Xu N; Zhang M; Xu W; Ling G; Yu J; Zhang P
    Analyst; 2022 Mar; 147(7):1478-1491. PubMed ID: 35285841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of sampling interstitial fluid from skin using a microneedle patch.
    Samant PP; Prausnitz MR
    Proc Natl Acad Sci U S A; 2018 May; 115(18):4583-4588. PubMed ID: 29666252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D-printed, aptamer-based microneedle sensor arrays using magnetic placement on live rats for pharmacokinetic measurements in interstitial fluid.
    Reynoso M; Chang AY; Wu Y; Murray R; Suresh S; Dugas Y; Wang J; Arroyo-Currás N
    Biosens Bioelectron; 2024 Jan; 244():115802. PubMed ID: 37939414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescein kinetics in interstitial fluid harvested from diabetic skin during fluorescein angiography: implications for glucose monitoring.
    Smith A; Yang D; Delcher H; Eppstein J; Williams D; Wilkes S
    Diabetes Technol Ther; 1999; 1(1):21-7. PubMed ID: 11475300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recruitment and Collection of Dermal Interstitial Fluid Using a Microneedle Patch.
    Kolluru C; Williams M; Chae J; Prausnitz MR
    Adv Healthc Mater; 2019 Feb; 8(3):e1801262. PubMed ID: 30609270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of sponge-forming microneedle patch for rapidly sampling interstitial fluid for analysis.
    Chen J; Wang M; Ye Y; Yang Z; Ruan Z; Jin N
    Biomed Microdevices; 2019 Jul; 21(3):63. PubMed ID: 31273475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of ultrasonically extracted interstitial fluid as a predictor of blood glucose levels.
    Mitragotri S; Coleman M; Kost J; Langer R
    J Appl Physiol (1985); 2000 Sep; 89(3):961-6. PubMed ID: 10956339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.