These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 15738919)

  • 1. Theoretical foundation for real-time prostate localization using an inductively coupled transmitter and a superconducting quantum interference device (SQUID) magnetometer system.
    McGary JE
    J Appl Clin Med Phys; 2004; 5(4):29-45. PubMed ID: 15738919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a remanence measurement-based SQUID system with in-depth resolution for nanoparticle imaging.
    Ge S; Shi X; Baker JR; Banaszak Holl MM; Orr BG
    Phys Med Biol; 2009 May; 54(10):N177-88. PubMed ID: 19398816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SQUID-detected magnetic resonance imaging in microtesla fields.
    Clarke J; Hatridge M; Mössle M
    Annu Rev Biomed Eng; 2007; 9():389-413. PubMed ID: 17328671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysing radio-frequency coil arrays in high-field magnetic resonance imaging by the combined field integral equation method.
    Wang S; Duyn JH
    Phys Med Biol; 2006 Jun; 51(12):3211-29. PubMed ID: 16757872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prostate mechanical imaging: 3-D image composition and feature calculations.
    Egorov V; Ayrapetyan S; Sarvazyan AP
    IEEE Trans Med Imaging; 2006 Oct; 25(10):1329-40. PubMed ID: 17024836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A localization method using 3-axis magnetoresistive sensors for tracking of capsule endoscope.
    Wang X; Meng MQ; Hu C
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2522-5. PubMed ID: 17946518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-temperature superconducting quantum interference device with cooled LC resonant circuit for measuring alternating magnetic fields with improved signal-to-noise ratio.
    Qiu L; Zhang Y; Krause HJ; Braginski AI; Usoskin A
    Rev Sci Instrum; 2007 May; 78(5):054701. PubMed ID: 17552846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Method for nonlinear characterization of radio frequency coils made of high temperature superconducting material in view of magnetic resonance imaging applications.
    Girard O; Ginefri JC; Poirier-Quinot M; Darrasse L
    Rev Sci Instrum; 2007 Dec; 78(12):124703. PubMed ID: 18163742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new type of gradiometer for the receiving circuit of magnetic induction tomography (MIT).
    Scharfetter H; Merwa R; Pilz K
    Physiol Meas; 2005 Apr; 26(2):S307-18. PubMed ID: 15798243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Field Distribution and Coupling Investigation of an Eight-Channel RF Coil Consisting of Different Dipole Coil Elements for 7 T MRI.
    Chen Z; Solbach K; Erni D; Rennings A
    IEEE Trans Biomed Eng; 2017 Jun; 64(6):1297-1304. PubMed ID: 27576239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A clinical water-coated antenna applicator for MR-controlled deep-body hyperthermia: a comparison of calculated and measured 3-D temperature data sets.
    Nadobny J; Wlodarczyk W; Westhoff L; Gellermann J; Felix R; Wust P
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):505-19. PubMed ID: 15759581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated active tracking detector for MRI-guided interventions.
    Anders J; Sangiorgio P; Deligianni X; Santini F; Scheffler K; Boero G
    Magn Reson Med; 2012 Jan; 67(1):290-6. PubMed ID: 22135242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preliminary ex vivo 3D microscopy of coronary arteries using a standard 1.5 T MRI scanner and a superconducting RF coil.
    Poirier-Quinot M; Ginefri JC; Ledru F; Fornes P; Darrasse L
    MAGMA; 2005 May; 18(2):89-95. PubMed ID: 15711851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superconducting quantum interference device setup for magnetoelectric measurements.
    Borisov P; Hochstrat A; Shvartsman VV; Kleemann W
    Rev Sci Instrum; 2007 Oct; 78(10):106105. PubMed ID: 17979461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 256-channel magnetic imaging system.
    da Silva FC; Halloran ST; Kos AB; Pappas DP
    Rev Sci Instrum; 2008 Jan; 79(1):013709. PubMed ID: 18248041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and evaluation of a 3D transrectal ultrasound prostate biopsy system.
    Cool D; Sherebrin S; Izawa J; Chin J; Fenster A
    Med Phys; 2008 Oct; 35(10):4695-707. PubMed ID: 18975715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preliminary work of real-time ultrasound imaging system for 2-D array transducer.
    Li X; Yang J; Ding M; Yuchi M
    Biomed Mater Eng; 2015; 26 Suppl 1():S1579-85. PubMed ID: 26405923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An ultralow noise current amplifier based on superconducting quantum interference device for high sensitivity applications.
    Granata C; Vettoliere A; Russo M
    Rev Sci Instrum; 2011 Jan; 82(1):013901. PubMed ID: 21280839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and performance of a planar-array MIT system with normal sensor alignment.
    Igney CH; Watson S; Williams RJ; Griffiths H; Dössel O
    Physiol Meas; 2005 Apr; 26(2):S263-78. PubMed ID: 15798239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo SNR in DENSE MRI; temporal and regional effects of field strength, receiver coil sensitivity and flip angle strategies.
    Sigfridsson A; Haraldsson H; Ebbers T; Knutsson H; Sakuma H
    Magn Reson Imaging; 2011 Feb; 29(2):202-8. PubMed ID: 21129876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.