BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 15739051)

  • 1. Surface modification of poly(L: -lactic acid) affects initial cell attachment, cell morphology, and cell growth.
    Yamaguchi M; Shinbo T; Kanamori T; Wang PC; Niwa M; Kawakami H; Nagaoka S; Hirakawa K; Kamiya M
    J Artif Organs; 2004; 7(4):187-93. PubMed ID: 15739051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell adhesion and morphology in porous scaffold based on enantiomeric poly(lactic acid) graft-type phospholipid polymers.
    Watanabe J; Eriguchi T; Ishihara K
    Biomacromolecules; 2002; 3(6):1375-83. PubMed ID: 12425679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A poly(L-lactic acid) nanofibre mesh scaffold for endothelial cells on vascular prostheses.
    François S; Chakfé N; Durand B; Laroche G
    Acta Biomater; 2009 Sep; 5(7):2418-28. PubMed ID: 19345622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Biocompatibility of poly-L-lactic acid/Bioglass-guided bone regeneration membranes processed with oxygen plasma].
    Fang W; Zeng SG; Gao WF
    Nan Fang Yi Ke Da Xue Xue Bao; 2015 Apr; 35(4):567-72. PubMed ID: 25907946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Schwann cell adhesion and elongation on a topographically and chemically modified poly(L-lactic acid) film surface.
    Huang WC; Yao CK; Liao JD; Lin CC; Ju MS
    J Biomed Mater Res A; 2011 Nov; 99(2):158-65. PubMed ID: 21976440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro biocompatibility of different polyester membranes.
    Vaquette C; Fawzi-Grancher S; Lavalle P; Frochot C; Viriot ML; Muller S; Wang X
    Biomed Mater Eng; 2006; 16(4 Suppl):S131-6. PubMed ID: 16823104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid hepatic cell attachment onto biodegradable polymer surfaces without toxicity using an avidin-biotin binding system.
    Kojima N; Matsuo T; Sakai Y
    Biomaterials; 2006 Oct; 27(28):4904-10. PubMed ID: 16759691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of ammonia plasma treatment on the properties and cytocompatibility of a poly(L-lactic acid) film surface.
    Jiao Y; Xu J; Zhou C
    J Biomater Sci Polym Ed; 2012; 23(6):763-77. PubMed ID: 21477458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The behavior of mesenchymal stem cells on micropatterned PLLA membranes.
    Lee IC; Lee YT; Yu BY; Lai JY; Young TH
    J Biomed Mater Res A; 2009 Dec; 91(3):929-38. PubMed ID: 19097151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilization of natural macromolecules on poly-L-lactic acid membrane surface in order to improve its cytocompatibility.
    Ma Z; Gao C; Gong Y; Ji J; Shen J
    J Biomed Mater Res; 2002; 63(6):838-47. PubMed ID: 12418032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced integrin-mediated human osteoblastic adhesion to porous amorphous calcium phosphate/poly (L-lactic acid) composite.
    Huang X; Qi Y; Li W; Shi Z; Weng W; Chen K; He R
    Chin Med J (Engl); 2014; 127(19):3443-8. PubMed ID: 25269911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved adhesion of human cultured periosteal sheets to a porous poly(L-lactic acid) membrane scaffold without the aid of exogenous adhesion biomolecules.
    Kawase T; Tanaka T; Nishimoto T; Okuda K; Nagata M; Burns DM; Yoshie H
    J Biomed Mater Res A; 2011 Jul; 98(1):100-13. PubMed ID: 21544931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of three-dimensional porous scaffolds of complicated shape for tissue engineering. I. Compression molding based on flexible-rigid combined mold.
    Wu L; Zhang H; Zhang J; Ding J
    Tissue Eng; 2005; 11(7-8):1105-14. PubMed ID: 16144446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavior of endothelial cells regulated by a dynamically changed microenvironment of biodegradable PLLA-PC.
    Chen Y; Chen N; Qiu Z; Wang L; Wan C; Luo X; Li S
    Macromol Biosci; 2009 May; 9(5):413-20. PubMed ID: 19116893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differentiation pattern of Vero cells cultured on poly(L-lactic acid)/poly(hydroxybutyrate-co-hydroxyvalerate) blends.
    Santos AR; Ferreira BM; Duek EA; Dolder H; Wada RS; Wada ML
    Artif Organs; 2004 Apr; 28(4):381-9. PubMed ID: 15084200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteoblast adhesion on poly(L-lactic acid)/polystyrene demixed thin film blends: effect of nanotopography, surface chemistry, and wettability.
    Lim JY; Hansen JC; Siedlecki CA; Hengstebeck RW; Cheng J; Winograd N; Donahue HJ
    Biomacromolecules; 2005; 6(6):3319-27. PubMed ID: 16283761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gelatine/PLLA sponge-like scaffolds: morphological and biological characterization.
    Lazzeri L; Cascone MG; Danti S; Serino LP; Moscato S; Bernardini N
    J Mater Sci Mater Med; 2007 Jul; 18(7):1399-405. PubMed ID: 17277980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermoresponsive terpolymeric films applicable for osteoblastic cell growth and noninvasive cell sheet harvesting.
    Kim YS; Lim JY; Donahue HJ; Lowe TL
    Tissue Eng; 2005; 11(1-2):30-40. PubMed ID: 15738659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of micro-patterned PLLA membranes on outgrowth and orientation of hippocampal neurites.
    Morelli S; Salerno S; Piscioneri A; Papenburg BJ; Di Vito A; Giusi G; Canonaco M; Stamatialis D; Drioli E; De Bartolo L
    Biomaterials; 2010 Sep; 31(27):7000-11. PubMed ID: 20579728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microporous poly(L-lactic acid) membranes fabricated by polyethylene glycol solvent-cast/particulate leaching technique.
    Selvam S; Chang WV; Nakamura T; Samant DM; Thomas PB; Trousdale MD; Mircheff AK; Schechter JE; Yiu SC
    Tissue Eng Part C Methods; 2009 Sep; 15(3):463-74. PubMed ID: 19260769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.