BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 15739169)

  • 1. Large-scale production of pharmaceuticals by marine sponges: sea, cell, or synthesis?
    Sipkema D; Osinga R; Schatton W; Mendola D; Tramper J; Wijffels RH
    Biotechnol Bioeng; 2005 Apr; 90(2):201-22. PubMed ID: 15739169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential of sponges and microalgae for marine biotechnology.
    Wijffels RH
    Trends Biotechnol; 2008 Jan; 26(1):26-31. PubMed ID: 18037175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Bioactive compounds from marine sponges and cell culture of marine sponges].
    Zhang XY; Zhao QY; Xue S; Zhang W
    Sheng Wu Gong Cheng Xue Bao; 2002 Jan; 18(1):10-5. PubMed ID: 11977585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of cell culture for the production of bioactive compounds from sponges: synthesis of avarol by primmorphs from Dysidea avara.
    Müller WE; Böhm M; Batel R; De Rosa S; Tommonaro G; Müller IM; Schröder HC
    J Nat Prod; 2000 Aug; 63(8):1077-81. PubMed ID: 10978201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation of sesquiterpenoids from sponge Dysidea avara and chemical modification of avarol as potential antitumor agents.
    Shen YC; Lu CH; Chakraborty R; Kuo YH
    Nat Prod Res; 2003 Apr; 17(2):83-9. PubMed ID: 12713119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aquaculture of "non-food organisms" for natural substance production.
    Liebezeit G
    Adv Biochem Eng Biotechnol; 2005; 97():1-28. PubMed ID: 16261804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustainable production of bioactive compounds from sponges: primmorphs as bioreactors.
    Schröder HC; Brümmer F; Fattorusso E; Aiello A; Menna M; de Rosa S; Batel R; Müller WE
    Prog Mol Subcell Biol; 2003; 37():163-97. PubMed ID: 15825644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in the production of sponge biomass Aplysina aerophoba--a model sponge for ex situ sponge biomass production.
    Hausmann R; Vitello MP; Leitermann F; Syldatk C
    J Biotechnol; 2006 Jun; 124(1):117-27. PubMed ID: 16697067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ aquaculture methods for Dysidea avara (Demospongiae, Porifera) in the northwestern Mediterranean.
    de Caralt S; Sánchez-Fontenla J; Uriz MJ; Wijffels RH
    Mar Drugs; 2010 May; 8(6):1731-42. PubMed ID: 20631865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfated polysaccharides from marine sponges (Porifera): an ancestor cell-cell adhesion event based on the carbohydrate-carbohydrate interaction.
    Vilanova E; Coutinho CC; Mourão PA
    Glycobiology; 2009 Aug; 19(8):860-7. PubMed ID: 19395676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustainable production of bioactive compounds by sponges--cell culture and gene cluster approach: a review.
    Müller WE; Grebenjuk VA; Le Pennec G; Schröder H; Brümmer F; Hentschel U; Müller IM; Breter H
    Mar Biotechnol (NY); 2004; 6(2):105-17. PubMed ID: 15085406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sponge secondary metabolites: biochemical and ultrastructural localization of the antimitotic agent avarol in Dysidea avara.
    Müller WE; Diehl-Seifert B; Sobel C; Bechtold A; Kljajić Z; Dorn A
    J Histochem Cytochem; 1986 Dec; 34(12):1687-90. PubMed ID: 3782777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sources of secondary metabolite variation in Dysidea avara (Porifera: Demospongiae): the importance of having good neighbors.
    De Caralt S; Bry D; Bontemps N; Turon X; Uriz MJ; Banaigs B
    Mar Drugs; 2013 Feb; 11(2):489-503. PubMed ID: 23429282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards commercial production of sponge medicines.
    Koopmans M; Martens D; Wijffels RH
    Mar Drugs; 2009 Dec; 7(4):787-802. PubMed ID: 20098610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new bioactive sesquiterpenoid quinone from the Mediterranean Sea marine sponge Dysidea avara.
    Hamed AN; Wätjen W; Schmitz R; Chovolou Y; Edrada-Ebel R; Youssef DT; Kamel MS; Proksch P
    Nat Prod Commun; 2013 Mar; 8(3):289-92. PubMed ID: 23678793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogenetic diversity of culturable fungi associated with the Hawaiian Sponges Suberites zeteki and Gelliodes fibrosa.
    Wang G; Li Q; Zhu P
    Antonie Van Leeuwenhoek; 2008; 93(1-2):163-74. PubMed ID: 17647088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diversity and quorum-sensing signal production of Proteobacteria associated with marine sponges.
    Mohamed NM; Cicirelli EM; Kan J; Chen F; Fuqua C; Hill RT
    Environ Microbiol; 2008 Jan; 10(1):75-86. PubMed ID: 18211268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Producing drugs from marine sponges.
    Belarbi el H; Contreras Gómez A; Chisti Y; García Camacho F; Molina Grima E
    Biotechnol Adv; 2003 Oct; 21(7):585-98. PubMed ID: 14516872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and evaluation of nonsiderophore cyclic peptides from marine sponges.
    Guan LL; Sera Y; Adachi K; Nishida F; Shizuri Y
    Biochem Biophys Res Commun; 2001 May; 283(4):976-81. PubMed ID: 11350081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antitumour polyether macrolides: four new halichondrins from the New Zealand deep-water marine sponge Lissodendoryx sp.
    Hickford SJ; Blunt JW; Munro MH
    Bioorg Med Chem; 2009 Mar; 17(6):2199-203. PubMed ID: 19081259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.