These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 15739192)

  • 1. Theoretical insights into the mechanism of acetylcholinesterase-catalyzed acylation of acetylcholine.
    Manojkumar TK; Cui C; Kim KS
    J Comput Chem; 2005 Apr; 26(6):606-11. PubMed ID: 15739192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions between the peripheral site and the acylation site in acetylcholinesterase.
    Rosenberry TL; Johnson JL; Cusack B; Thomas JL; Emani S; Venkatasubban KS
    Chem Biol Interact; 2005 Dec; 157-158():181-9. PubMed ID: 16256966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical studies on the deacylation step of serine protease catalysis in the gas phase, in solution, and in elastase.
    Topf M; Richards WG
    J Am Chem Soc; 2004 Nov; 126(44):14631-41. PubMed ID: 15521783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ab initio model study on acetylcholinesterase catalysis: potential energy surfaces of the proton transfer reactions.
    Tachikawa H; Igarashi M; Nishihira J; Ishibashi T
    J Photochem Photobiol B; 2005 Apr; 79(1):11-23. PubMed ID: 15792875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling effects of oxyanion hole on the ester hydrolysis catalyzed by human cholinesterases.
    Gao D; Zhan CG
    J Phys Chem B; 2005 Dec; 109(48):23070-6. PubMed ID: 16854005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A semiempirical study of acetylcholine hydrolysis catalyzed by Drosophila melanogaster acetylcholinesterase.
    Sant'Anna CM; Viana Ados S; do Nascimento Junior NM
    Bioorg Chem; 2006 Apr; 34(2):77-89. PubMed ID: 16540146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studying the roles of W86, E202, and Y337 in binding of acetylcholine to acetylcholinesterase using a combined molecular dynamics and multiple docking approach.
    Kua J; Zhang Y; Eslami AC; Butler JR; McCammon JA
    Protein Sci; 2003 Dec; 12(12):2675-84. PubMed ID: 14627729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-Scale First-Principles Molecular Dynamics Simulations with Electrostatic Embedding: Application to Acetylcholinesterase Catalysis.
    Fattebert JL; Lau EY; Bennion BJ; Huang P; Lightstone FC
    J Chem Theory Comput; 2015 Dec; 11(12):5688-95. PubMed ID: 26642985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the catalytic triad and oxyanion hole in acetylcholinesterase catalysis: an ab initio QM/MM study.
    Zhang Y; Kua J; McCammon JA
    J Am Chem Soc; 2002 Sep; 124(35):10572-7. PubMed ID: 12197759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ab initio study of hydrogen-bond formation between aliphatic and phenolic hydroxy groups and selected amino acid side chains.
    Nagy PI; Erhardt PW
    J Phys Chem A; 2008 May; 112(18):4342-54. PubMed ID: 18373368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme:substrate hydrogen bond shortening during the acylation phase of serine protease catalysis.
    Fodor K; Harmat V; Neutze R; Szilágyi L; Gráf L; Katona G
    Biochemistry; 2006 Feb; 45(7):2114-21. PubMed ID: 16475800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the acetylcholinesterase inhibition of sarin: a comparative interaction study of the inhibitor and acetylcholine with a model enzyme cavity.
    Majumdar D; Roszak S; Leszczynski J
    J Phys Chem B; 2006 Jul; 110(27):13597-607. PubMed ID: 16821887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short, strong hydrogen bonds at the active site of human acetylcholinesterase: proton NMR studies.
    Massiah MA; Viragh C; Reddy PM; Kovach IM; Johnson J; Rosenberry TL; Mildvan AS
    Biochemistry; 2001 May; 40(19):5682-90. PubMed ID: 11341833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic reaction mechanism of acetylcholinesterase determined by Born-Oppenheimer ab initio QM/MM molecular dynamics simulations.
    Zhou Y; Wang S; Zhang Y
    J Phys Chem B; 2010 Jul; 114(26):8817-25. PubMed ID: 20550161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation between the substrate structure and the rate of acetylcholinesterase hydrolysis modeled with the combined quantum mechanical/molecular mechanical studies.
    Lushchekina SV; Nemukhin AV; Morozov DI; Varfolomeev SD
    Chem Biol Interact; 2010 Sep; 187(1-3):59-63. PubMed ID: 20398640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical modeling study for the phosphonylation mechanisms of the catalytic triad of acetylcholinesterase by sarin.
    Wang J; Gu J; Leszczynski J
    J Phys Chem B; 2008 Mar; 112(11):3485-94. PubMed ID: 18303880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuum simulations of acetylcholine consumption by acetylcholinesterase: a Poisson-Nernst-Planck approach.
    Zhou YC; Lu B; Huber GA; Holst MJ; McCammon JA
    J Phys Chem B; 2008 Jan; 112(2):270-5. PubMed ID: 18052268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CH/pi hydrogen bonds as evidenced in the substrate specificity of acetylcholine esterase.
    Umezawa Y; Nishio M
    Biopolymers; 2005 Dec; 79(5):248-58. PubMed ID: 16113998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subangstrom crystallography reveals that short ionic hydrogen bonds, and not a His-Asp low-barrier hydrogen bond, stabilize the transition state in serine protease catalysis.
    Fuhrmann CN; Daugherty MD; Agard DA
    J Am Chem Soc; 2006 Jul; 128(28):9086-102. PubMed ID: 16834383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a complete cycle of acetylcholinesterase catalysis by ab initio QM/MM modeling.
    Nemukhin AV; Lushchekina SV; Bochenkova AV; Golubeva AA; Varfolomeev SD
    J Mol Model; 2008 May; 14(5):409-16. PubMed ID: 18343962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.