BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 15739204)

  • 1. Statistical criteria for the identification of protein active sites using Theoretical Microscopic Titration Curves.
    Ko J; Murga LF; André P; Yang H; Ondrechen MJ; Williams RJ; Agunwamba A; Budil DE
    Proteins; 2005 May; 59(2):183-95. PubMed ID: 15739204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of electrostatic interaction energies and protonation state populations in enzyme active sites.
    Søndergaard CR; McIntosh LP; Pollastri G; Nielsen JE
    J Mol Biol; 2008 Feb; 376(1):269-87. PubMed ID: 18155242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New insights into the reaction mechanism catalyzed by the glutamate racemase enzyme: pH titration curves and classical molecular dynamics simulations.
    Puig E; Garcia-Viloca M; Gonzalez-Lafont A; Lluch JM; Field MJ
    J Phys Chem B; 2007 Mar; 111(9):2385-97. PubMed ID: 17286428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exhaustive mutagenesis of six secondary active-site residues in Escherichia coli chorismate mutase shows the importance of hydrophobic side chains and a helix N-capping position for stability and catalysis.
    Lassila JK; Keeffe JR; Kast P; Mayo SL
    Biochemistry; 2007 Jun; 46(23):6883-91. PubMed ID: 17506527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability for function trade-offs in the enolase superfamily "catalytic module".
    Nagatani RA; Gonzalez A; Shoichet BK; Brinen LS; Babbitt PC
    Biochemistry; 2007 Jun; 46(23):6688-95. PubMed ID: 17503785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic mechanism of penicillin-binding protein 5 of Escherichia coli.
    Zhang W; Shi Q; Meroueh SO; Vakulenko SB; Mobashery S
    Biochemistry; 2007 Sep; 46(35):10113-21. PubMed ID: 17685588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping active site residues in glutamate-5-kinase. The substrate glutamate and the feed-back inhibitor proline bind at overlapping sites.
    Pérez-Arellano I; Rubio V; Cervera J
    FEBS Lett; 2006 Nov; 580(26):6247-53. PubMed ID: 17069808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-function studies of arginine at position 276 in CTX-M beta-lactamases.
    Pérez-Llarena FJ; Cartelle M; Mallo S; Beceiro A; Pérez A; Villanueva R; Romero A; Bonnet R; Bou G
    J Antimicrob Chemother; 2008 Apr; 61(4):792-7. PubMed ID: 18281307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD.
    Li C; Li JJ; Montgomery MG; Wood SP; Bugg TD
    Biochemistry; 2006 Oct; 45(41):12470-9. PubMed ID: 17029402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-directed mutagenesis of UDP-galactopyranose mutase reveals a critical role for the active-site, conserved arginine residues.
    Chad JM; Sarathy KP; Gruber TD; Addala E; Kiessling LL; Sanders DA
    Biochemistry; 2007 Jun; 46(23):6723-32. PubMed ID: 17511471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of active sites for protein structures from computed chemical properties.
    Ko J; Murga LF; Wei Y; Ondrechen MJ
    Bioinformatics; 2005 Jun; 21 Suppl 1():i258-65. PubMed ID: 15961465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Looking at enzymes from the inside out: the proximity of catalytic residues to the molecular centroid can be used for detection of active sites and enzyme-ligand interfaces.
    Ben-Shimon A; Eisenstein M
    J Mol Biol; 2005 Aug; 351(2):309-26. PubMed ID: 16019028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the wild-type TEM-1 beta-lactamase at 1.55 A and the mutant enzyme Ser70Ala at 2.1 A suggest the mode of noncovalent catalysis for the mutant enzyme.
    Stec B; Holtz KM; Wojciechowski CL; Kantrowitz ER
    Acta Crystallogr D Biol Crystallogr; 2005 Aug; 61(Pt 8):1072-9. PubMed ID: 16041072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutational analysis of peptidoglycan amidase MepA.
    Firczuk M; Bochtler M
    Biochemistry; 2007 Jan; 46(1):120-8. PubMed ID: 17198381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-function relationships in Escherichia coli adenylate cyclase.
    Linder JU
    Biochem J; 2008 Nov; 415(3):449-54. PubMed ID: 18620542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploitation of structural and regulatory diversity in glutamate racemases.
    Lundqvist T; Fisher SL; Kern G; Folmer RH; Xue Y; Newton DT; Keating TA; Alm RA; de Jonge BL
    Nature; 2007 Jun; 447(7146):817-22. PubMed ID: 17568739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computed protonation properties: unique capabilities for protein functional site prediction.
    Murga LF; Wei Y; Ondrechen MJ
    Genome Inform; 2007; 19():107-18. PubMed ID: 18546509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzyme deactivation due to metal-ion dissociation during turnover of the cobalt-beta-lactamase catalyzed hydrolysis of beta-lactams.
    Badarau A; Page MI
    Biochemistry; 2006 Sep; 45(36):11012-20. PubMed ID: 16953588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of TTHA0252 from Thermus thermophilus HB8, a RNA degradation protein of the metallo-beta-lactamase superfamily.
    Ishikawa H; Nakagawa N; Kuramitsu S; Masui R
    J Biochem; 2006 Oct; 140(4):535-42. PubMed ID: 16945939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of OXA-1 beta-lactamase Asp(66) in the stabilization of the active-site carbamate group and in substrate turnover.
    Leonard DA; Hujer AM; Smith BA; Schneider KD; Bethel CR; Hujer KM; Bonomo RA
    Biochem J; 2008 Mar; 410(3):455-62. PubMed ID: 18031291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.