These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 15739516)
1. Comparison of chemiluminescence and ultraviolet ozone monitor responses in the presence of humidity and photochemical pollutants. Kleindienst TE; Hudgens EE; Smith DF; McElroy FF; Bufalini JJ Air Waste; 1993 Feb; 43(2):213-22. PubMed ID: 15739516 [TBL] [Abstract][Full Text] [Related]
2. Mechanism and elimination of a water vapor interference in the measurement of ozone by UV absorbance. Wilson KL; Birks JW Environ Sci Technol; 2006 Oct; 40(20):6361-7. PubMed ID: 17120566 [TBL] [Abstract][Full Text] [Related]
3. A re-examination of ambient air ozone monitor interferences. Spicer CW; Joseph DW; Ollison WM J Air Waste Manag Assoc; 2010 Nov; 60(11):1353-64. PubMed ID: 21141429 [TBL] [Abstract][Full Text] [Related]
4. Field testing of new-technology ambient air ozone monitors. Ollison WM; Crow W; Spicer CW J Air Waste Manag Assoc; 2013 Jul; 63(7):855-63. PubMed ID: 23926854 [TBL] [Abstract][Full Text] [Related]
5. Field evaluations of newly available "interference-free" monitors for nitrogen dioxide and ozone at near-road and conventional National Ambient Air Quality Standards compliance sites. Leston AR; Ollison WM J Air Waste Manag Assoc; 2017 Nov; 67(11):1240-1248. PubMed ID: 28633004 [TBL] [Abstract][Full Text] [Related]
6. Comparison of ultraviolet absorbance, chemiluminescence, and DOAS instruments for ambient ozone monitoring. Williams EJ; Fehsenfeld FC; Jobson BT; Kuster WC; Goldan PD; Stutz J; McClenny WA Environ Sci Technol; 2006 Sep; 40(18):5755-62. PubMed ID: 17007137 [TBL] [Abstract][Full Text] [Related]
7. Changes in air quality and tropospheric composition due to depletion of stratospheric ozone and interactions with climate. Tang X; Wilson SR; Solomon KR; Shao M; Madronich S Photochem Photobiol Sci; 2011 Feb; 10(2):280-91. PubMed ID: 21253665 [TBL] [Abstract][Full Text] [Related]
8. Comparison of ozone measurement methods in biomass burning smoke: an evaluation under field and laboratory conditions. Long RW; Whitehill A; Habel A; Urbanski S; Halliday H; Colón M; Kaushik S; Landis MS Atmos Meas Tech; 2021 Mar; 14(3):1783-1800. PubMed ID: 34017362 [TBL] [Abstract][Full Text] [Related]
9. [Meta-analysis of the Italian studies on short-term effects of air pollution]. Biggeri A; Bellini P; Terracini B; Epidemiol Prev; 2001; 25(2 Suppl):1-71. PubMed ID: 11515188 [TBL] [Abstract][Full Text] [Related]
10. Effect of calibration environment on the performance of direct-reading organic vapor monitors. LeBouf RF; Slaven JE; Coffey CC J Air Waste Manag Assoc; 2013 May; 63(5):528-33. PubMed ID: 23786144 [TBL] [Abstract][Full Text] [Related]
11. [Smog chamber simulation of ozone formation from atmospheric photooxidation of propane]. Huang LH; Mo CR; Xu YF; Jia L Huan Jing Ke Xue; 2012 Aug; 33(8):2551-7. PubMed ID: 23213871 [TBL] [Abstract][Full Text] [Related]
12. Measurement capability of field portable organic vapor monitoring instruments under different experimental conditions. Coffey CC; Pearce TA; Lawrence RB; Hudnall JB; Slaven JE; Martin SB J Occup Environ Hyg; 2009 Jan; 6(1):1-8. PubMed ID: 18949604 [TBL] [Abstract][Full Text] [Related]
13. Efficiency of clay--TiO2 nanocomposites on the photocatalytic elimination of a model hydrophobic air pollutant. Kibanova D; Cervini-Silva J; Destaillats H Environ Sci Technol; 2009 Mar; 43(5):1500-6. PubMed ID: 19350926 [TBL] [Abstract][Full Text] [Related]
15. Effect of calibration and environmental condition on the performance of direct-reading organic vapor monitors. Coffey C; LeBouf R; Lee L; Slaven J; Martin S J Occup Environ Hyg; 2012; 9(11):670-80. PubMed ID: 23016630 [TBL] [Abstract][Full Text] [Related]
16. Multicity study of air pollution and mortality in Latin America (the ESCALA study). Romieu I; Gouveia N; Cifuentes LA; de Leon AP; Junger W; Vera J; Strappa V; Hurtado-Díaz M; Miranda-Soberanis V; Rojas-Bracho L; Carbajal-Arroyo L; Tzintzun-Cervantes G; Res Rep Health Eff Inst; 2012 Oct; (171):5-86. PubMed ID: 23311234 [TBL] [Abstract][Full Text] [Related]
17. Estimation of personal ozone exposure using ambient concentrations and influencing factors. Niu Y; Cai J; Xia Y; Yu H; Chen R; Lin Z; Liu C; Chen C; Wang W; Peng L; Xia X; Fu Q; Kan H Environ Int; 2018 Aug; 117():237-242. PubMed ID: 29763819 [TBL] [Abstract][Full Text] [Related]
18. Personal and ambient exposures to air toxics in Camden, New Jersey. Lioy PJ; Fan Z; Zhang J; Georgopoulos P; Wang SW; Ohman-Strickland P; Wu X; Zhu X; Harrington J; Tang X; Meng Q; Jung KH; Kwon J; Hernandez M; Bonnano L; Held J; Neal J; Res Rep Health Eff Inst; 2011 Aug; (160):3-127; discussion 129-51. PubMed ID: 22097188 [TBL] [Abstract][Full Text] [Related]
19. Changes in biologically active ultraviolet radiation reaching the Earth's surface. Madronich S; McKenzie RL; Björn LO; Caldwell MM J Photochem Photobiol B; 1998 Oct; 46(1-3):5-19. PubMed ID: 9894350 [TBL] [Abstract][Full Text] [Related]
20. Evaluation and Field Calibration of a Low-Cost Ozone Monitor at a Regulatory Urban Monitoring Station. Masiol M; Squizzato S; Chalupa D; Rich DQ; Hopke PK Aerosol Air Qual Res; 2018 Aug; 18(8):2029-2037. PubMed ID: 32983236 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]