BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 15740074)

  • 1. Degradation of neohesperidin dihydrochalcone by human intestinal bacteria.
    Braune A; Engst W; Blaut M
    J Agric Food Chem; 2005 Mar; 53(5):1782-90. PubMed ID: 15740074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering of plant cells for biotransformation of hesperedin into neohesperidin, a substrate for production of the low-calorie sweetener and flavor enhancer NHDC.
    Frydman A; Weisshaus O; Huhman DV; Sumner LW; Bar-Peled M; Lewinsohn E; Fluhr R; Gressel J; Eyal Y
    J Agric Food Chem; 2005 Dec; 53(25):9708-12. PubMed ID: 16332119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dihydrochalcone metabolism in the rat: phloretin.
    Monge P; Solheim E; Scheline RR
    Xenobiotica; 1984 Dec; 14(12):917-24. PubMed ID: 6531939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning and expression of a phloretin hydrolase gene from Eubacterium ramulus and characterization of the recombinant enzyme.
    Schoefer L; Braune A; Blaut M
    Appl Environ Microbiol; 2004 Oct; 70(10):6131-7. PubMed ID: 15466559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transglycosylation of neohesperidin dihydrochalcone by Bacillus stearothermophilus maltogenic amylase.
    Cho JS; Yoo SS; Cheong TK; Kim MJ; Kim Y; Park KH
    J Agric Food Chem; 2000 Feb; 48(2):152-4. PubMed ID: 10691608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transformation of flavonoids by intestinal microorganisms.
    Blaut M; Schoefer L; Braune A
    Int J Vitam Nutr Res; 2003 Mar; 73(2):79-87. PubMed ID: 12747214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of quercetin and luteolin by Eubacterium ramulus.
    Braune A; Gütschow M; Engst W; Blaut M
    Appl Environ Microbiol; 2001 Dec; 67(12):5558-67. PubMed ID: 11722907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal architecture and conformational properties of the inclusion complex, neohesperidin dihydrochalcone-cyclomaltoheptaose (beta-cyclodextrin), by X-ray diffraction.
    Malpezzi L; Fronza G; Fuganti C; Mele A; Brückner S
    Carbohydr Res; 2004 Aug; 339(12):2117-25. PubMed ID: 15280056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The red clover isoflavone irilone is largely resistant to degradation by the human gut microbiota.
    Braune A; Maul R; Schebb NH; Kulling SE; Blaut M
    Mol Nutr Food Res; 2010 Jul; 54(7):929-38. PubMed ID: 19998384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First bacterial chalcone isomerase isolated from Eubacterium ramulus.
    Herles C; Braune A; Blaut M
    Arch Microbiol; 2004 Jun; 181(6):428-34. PubMed ID: 15127184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The binding site for neohesperidin dihydrochalcone at the human sweet taste receptor.
    Winnig M; Bufe B; Kratochwil NA; Slack JP; Meyerhof W
    BMC Struct Biol; 2007 Oct; 7():66. PubMed ID: 17935609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of dehydrodiferulic acids by human intestinal microbiota.
    Braune A; Bunzel M; Yonekura R; Blaut M
    J Agric Food Chem; 2009 Apr; 57(8):3356-62. PubMed ID: 19275157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Galloyl, caffeoyl and hexahydroxydiphenoyl esters of dihydrochalcone glucosides from Balanophora tobiracola.
    Tanaka T; Uehara R; Nishida K; Kouno I
    Phytochemistry; 2005 Mar; 66(6):675-81. PubMed ID: 15771889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial-Driven Synthesis and Hydrolysis of Neohesperidin Dihydrochalcone: Biotransformation Process and Feasibility Investigation.
    Zou Y; Li X; Xin X; Xu H; Zhao G
    J Agric Food Chem; 2024 Feb; 72(8):4246-4256. PubMed ID: 38317352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro colonic catabolism of orange juice (poly)phenols.
    Pereira-Caro G; Borges G; Ky I; Ribas A; Calani L; Del Rio D; Clifford MN; Roberts SA; Crozier A
    Mol Nutr Food Res; 2015 Mar; 59(3):465-75. PubMed ID: 25545994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anaerobic transformation of quercetin-3-glucoside by bacteria from the human intestinal tract.
    Schneider H; Schwiertz A; Collins MD; Blaut M
    Arch Microbiol; 1999 Jan; 171(2):81-91. PubMed ID: 9914304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a HPLC-UV Method for the Separation and Quantification of Hesperidin, Neohesperidin, Neohesperidin Dihydrochalcone and Hesperetin.
    Chen L; Zhu S; Wang C; Chen L
    Nat Prod Res; 2023 May; 37(10):1714-1718. PubMed ID: 35915890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of gut microflora on pharmacokinetics of hesperidin: a study on non-antibiotic and pseudo-germ-free rats.
    Jin MJ; Kim U; Kim IS; Kim Y; Kim DH; Han SB; Kim DH; Kwon OS; Yoo HH
    J Toxicol Environ Health A; 2010; 73(21-22):1441-50. PubMed ID: 20954071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic degradation of flavonoids by Clostridium orbiscindens.
    Schoefer L; Mohan R; Schwiertz A; Braune A; Blaut M
    Appl Environ Microbiol; 2003 Oct; 69(10):5849-54. PubMed ID: 14532034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and quantification of the conjugated metabolites derived from orally administered hesperidin in rat plasma.
    Matsumoto H; Ikoma Y; Sugiura M; Yano M; Hasegawa Y
    J Agric Food Chem; 2004 Oct; 52(21):6653-9. PubMed ID: 15479036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.