These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 15740280)
1. Effect of the Ar-Ni(s) potential on the cross section for Ar+CH4/Ni{111} collision-induced desorption and the need for a more accurate CH4/Ni{111} potential. Sun L; Peterson KA; Alexeev Y; Windus T; Kindt J; Hase WL J Chem Phys; 2005 Jan; 122(4):44704. PubMed ID: 15740280 [TBL] [Abstract][Full Text] [Related]
2. Trajectory dynamics study of collision-induced dissociation of the Ar + CH4 reaction at hyperthermal conditions: vibrational excitation and isotope substitution. Marques JM; Martínez-Núñez E; Vazquez SA J Phys Chem A; 2006 Jun; 110(22):7113-21. PubMed ID: 16737261 [TBL] [Abstract][Full Text] [Related]
3. Ab initio and analytic intermolecular potentials for Ar-CH(3)OH. Tasić U; Alexeev Y; Vayner G; Crawford TD; Windus TL; Hase WL Phys Chem Chem Phys; 2006 Oct; 8(40):4678-84. PubMed ID: 17047766 [TBL] [Abstract][Full Text] [Related]
4. Quasiclassical trajectory study of the collision-induced dissociation dynamics of Ar + CH3SH+ using an ab initio interpolated potential energy surface. Martínez-Núñez E; Vázquez SA; Aoiz FJ; Castillo JF J Phys Chem A; 2006 Feb; 110(4):1225-31. PubMed ID: 16435783 [TBL] [Abstract][Full Text] [Related]
5. Quasiclassical trajectory study of energy transfer and collision-induced dissociation in hyperthermal Ar + CH4 and Ar + CF4 collisions. Troya D J Phys Chem A; 2005 Jul; 109(26):5814-24. PubMed ID: 16833915 [TBL] [Abstract][Full Text] [Related]
6. Trajectory dynamics study of the Ar + CH4 dissociation reaction at high temperatures: the importance of zero-point-energy effects. Marques JM; Martínez-Núñez E; Fernandez-Ramos A; Vazquez SA J Phys Chem A; 2005 Jun; 109(24):5415-23. PubMed ID: 16839068 [TBL] [Abstract][Full Text] [Related]
7. An analytical potential energy function to model protonated peptide soft-landing experiments. The CH3NH3+/CH4 interactions. Deb B; Hu W; Song K; Hase WL Phys Chem Chem Phys; 2008 Aug; 10(31):4565-72. PubMed ID: 18665306 [TBL] [Abstract][Full Text] [Related]
8. Collisional depolarization of OH(A) with Ar: Experiment and theory. Brouard M; Bryant A; Chang YP; Cireasa R; Eyles CJ; Green AM; Marinakis S; Aoiz FJ; Kłos J J Chem Phys; 2009 Jan; 130(4):044306. PubMed ID: 19191384 [TBL] [Abstract][Full Text] [Related]
9. Classical trajectory study of collisions of Ar with alkanethiolate self-assembled monolayers: potential-energy surface effects on dynamics. Scott Day B; Morris JR; Troya D J Chem Phys; 2005 Jun; 122(21):214712. PubMed ID: 15974767 [TBL] [Abstract][Full Text] [Related]
10. Quasiclassical trajectory study of the Cl+CH4 reaction dynamics on a quadratic configuration interaction with single and double excitation interpolated potential energy surface. Castillo JF; Aoiz FJ; Bañares L J Chem Phys; 2006 Sep; 125(12):124316. PubMed ID: 17014183 [TBL] [Abstract][Full Text] [Related]
11. Dynamics of energy transfer in collisions of O(3P) atoms with a 1-decanethiol self-assembled monolayer surface. Tasić US; Yan T; Hase WL J Phys Chem B; 2006 Jun; 110(24):11863-77. PubMed ID: 16800489 [TBL] [Abstract][Full Text] [Related]
12. Quasiclassical trajectory study of the collision-induced dissociation of CH3SH+ + Ar. Martínez-Núñez E; Vázquez SA; Marques JM J Chem Phys; 2004 Aug; 121(6):2571-7. PubMed ID: 15281855 [TBL] [Abstract][Full Text] [Related]
13. Measurements and simulations of high energy O(3P) + Ar(1S) angular scattering: single and multi-collision regimes. Braunstein M; Brunsvold AL; Garton DJ; Minton TK J Chem Phys; 2004 Feb; 120(5):2238-46. PubMed ID: 15268363 [TBL] [Abstract][Full Text] [Related]
14. Theoretical study of the dynamics of AR collisions with C2H6 and C2F6 at hyperthermal energy. Tasić U; Hein P; Troya D J Phys Chem A; 2007 May; 111(18):3618-32. PubMed ID: 17429956 [TBL] [Abstract][Full Text] [Related]
15. Spectroscopy of Ar-SH and Ar-SD. II. Determination of the three-dimensional intermolecular potential-energy surface. Sumiyoshi Y; Endo Y J Chem Phys; 2005 Aug; 123(5):054325. PubMed ID: 16108657 [TBL] [Abstract][Full Text] [Related]
16. Theoretical calculations of CH4 and H2 associative desorption from Ni(111): could subsurface hydrogen play an important role? Henkelman G; Arnaldsson A; Jónsson H J Chem Phys; 2006 Jan; 124(4):044706. PubMed ID: 16460199 [TBL] [Abstract][Full Text] [Related]
17. Penning ionization electron spectroscopy of C6H6 by collision with He*(2 3 S) metastable atoms and classical trajectory calculations: optimization of ab initio model potentials. Yamazaki M; Maeda S; Kishimoto N; Ohno K J Chem Phys; 2005 Jan; 122(4):44303. PubMed ID: 15740244 [TBL] [Abstract][Full Text] [Related]
18. Quasiclassical trajectory study of the reaction H+CH4(nu3 = 0,1)-->CH3+H2 using a new ab initio potential energy surface. Xie Z; Bowman JM; Zhang X J Chem Phys; 2006 Oct; 125(13):133120. PubMed ID: 17029446 [TBL] [Abstract][Full Text] [Related]
19. Molecular beam scattering of NO+Ne: a joint theoretical and experimental study. Kim Y; Meyer H; Alexander MH J Chem Phys; 2004 Jul; 121(3):1339-49. PubMed ID: 15260677 [TBL] [Abstract][Full Text] [Related]
20. Ab initio potential energy surface and rovibrational spectrum of Ar-HCCCN. Zhou Y; Xie D J Chem Phys; 2004 Aug; 121(6):2630-5. PubMed ID: 15281862 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]