BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 15740365)

  • 1. Analytical time-dependent density functional derivative methods within the RI-J approximation, an approach to excited states of large molecules.
    Rappoport D; Furche F
    J Chem Phys; 2005 Feb; 122(6):064105. PubMed ID: 15740365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient time-dependent density functional theory approximations for hybrid density functionals: analytical gradients and parallelization.
    Petrenko T; Kossmann S; Neese F
    J Chem Phys; 2011 Feb; 134(5):054116. PubMed ID: 21303101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First-order nonadiabatic couplings from time-dependent hybrid density functional response theory: Consistent formalism, implementation, and performance.
    Send R; Furche F
    J Chem Phys; 2010 Jan; 132(4):044107. PubMed ID: 20113019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excited state geometry optimizations by analytical energy gradient of long-range corrected time-dependent density functional theory.
    Chiba M; Tsuneda T; Hirao K
    J Chem Phys; 2006 Apr; 124(14):144106. PubMed ID: 16626179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytical Hessian of electronic excited states in time-dependent density functional theory with Tamm-Dancoff approximation.
    Liu J; Liang W
    J Chem Phys; 2011 Jul; 135(1):014113. PubMed ID: 21744894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the doubly excited state with time-dependent Hartree-Fock and density functional theories.
    Isborn CM; Li X
    J Chem Phys; 2008 Nov; 129(20):204107. PubMed ID: 19045852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical approach for the excited-state Hessian in time-dependent density functional theory: formalism, implementation, and performance.
    Liu J; Liang W
    J Chem Phys; 2011 Nov; 135(18):184111. PubMed ID: 22088056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of density functional theory optimized basis sets for gradient corrected functionals to transition metal systems: the case of small Nin (nLópez Arvizu G; Calaminici P
    J Chem Phys; 2007 May; 126(19):194102. PubMed ID: 17523793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of molecular geometry, exchange-correlation functional, and solvent effects in the modeling of vertical excitation energies in phthalocyanines using time-dependent density functional theory (TDDFT) and polarized continuum model TDDFT methods: can modern computational chemistry methods explain experimental controversies?
    Nemykin VN; Hadt RG; Belosludov RV; Mizuseki H; Kawazoe Y
    J Phys Chem A; 2007 Dec; 111(50):12901-13. PubMed ID: 18004829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Double-hybrid density functional theory for excited electronic states of molecules.
    Grimme S; Neese F
    J Chem Phys; 2007 Oct; 127(15):154116. PubMed ID: 17949141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast computation of molecular random phase approximation correlation energies using resolution of the identity and imaginary frequency integration.
    Eshuis H; Yarkony J; Furche F
    J Chem Phys; 2010 Jun; 132(23):234114. PubMed ID: 20572696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vibronic effects in the 1(1)B(u)(1(1)B(2)) excited singlet states of oligothiophenes. fluorescence study of the 1(1)A(g)(1(1)A(1)) <-- 1(1)B(u)(1(1)B(2)) transition in terms of DFT, TDDFT, and CASSCF methods.
    Andrzejak M; Pawlikowski MT
    J Phys Chem A; 2008 Dec; 112(51):13737-44. PubMed ID: 19053502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density functional calculations of the vibronic structure of electronic absorption spectra.
    Dierksen M; Grimme S
    J Chem Phys; 2004 Feb; 120(8):3544-54. PubMed ID: 15268516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ground- and excited-state diatomic bond lengths, vibrational levels, and potential-energy curves from conventional and localized Hartree-Fock-based density-functional theory.
    Teale AM; Tozer DJ
    J Chem Phys; 2005 Jan; 122(3):34101. PubMed ID: 15740186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of a nonempirical meta-generalized gradient approximation density functional for excitation energies.
    Tao J; Tretiak S; Zhu JX
    J Chem Phys; 2008 Feb; 128(8):084110. PubMed ID: 18315036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-dependent density functional theory calculations of near-edge X-ray absorption fine structure with short-range corrected functionals.
    Besley NA; Peach MJ; Tozer DJ
    Phys Chem Chem Phys; 2009 Nov; 11(44):10350-8. PubMed ID: 19890519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basis set convergence studies of Hartree-Fock calculations of molecular properties within the resolution of the identity approximation.
    Artemyev A; Bibikov A; Zayets V; Bodrenko I
    J Chem Phys; 2005 Jul; 123(2):24103. PubMed ID: 16050737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonance Raman spectra of uracil based on Kramers-Kronig relations using time-dependent density functional calculations and multireference perturbation theory.
    Neugebauer J; Hess BA
    J Chem Phys; 2004 Jun; 120(24):11564-77. PubMed ID: 15268191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculation of excitation energies of open-shell molecules with spatially degenerate ground states. I. Transformed reference via an intermediate configuration Kohn-Sham density-functional theory and applications to d1 and d2 systems with octahedral and tetrahedral symmetries.
    Seth M; Ziegler T
    J Chem Phys; 2005 Oct; 123(14):144105. PubMed ID: 16238372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An improved seminumerical Coulomb and exchange algorithm for properties and excited states in modern density functional theory.
    Holzer C
    J Chem Phys; 2020 Nov; 153(18):184115. PubMed ID: 33187416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.