BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

765 related articles for article (PubMed ID: 15740645)

  • 1. Morphological and distribution characteristics of sweat glands in hypertrophic scar and their possible effects on sweat gland regeneration.
    Fu XB; Sun TZ; Li XK; Sheng ZY
    Chin Med J (Engl); 2005 Feb; 118(3):186-91. PubMed ID: 15740645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epidermal stem cells are the source of sweat glands in human fetal skin: evidence of synergetic development of stem cells, sweat glands, growth factors, and matrix metalloproteinases.
    Fu X; Li J; Sun X; Sun T; Sheng Z
    Wound Repair Regen; 2005; 13(1):102-8. PubMed ID: 15659042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Study on the location and the expression characteristics of epidermal stem cells in normal adult skin and scar tissue].
    Zhao ZL; Fu XB; Sun TZ; Chen W; Sun XQ
    Zhonghua Shao Shang Za Zhi; 2003 Feb; 19(1):12-4. PubMed ID: 12678967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The changing pattern of stem cell markers of sweat gland in deep partial-thickness burn wound].
    JIANG DY; ZONG XL; FU XB; WANG W; SHAN F
    Zhonghua Shao Shang Za Zhi; 2009 Aug; 25(4):301-4. PubMed ID: 19951551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skin regenerated from cultured epithelial autografts on full-thickness burn wounds from 6 days to 5 years after grafting. A light, electron microscopic and immunohistochemical study.
    Compton CC; Gill JM; Bradford DA; Regauer S; Gallico GG; O'Connor NE
    Lab Invest; 1989 May; 60(5):600-12. PubMed ID: 2469857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potentiality of mesenchymal stem cells in regeneration of sweat glands.
    Fu X; Qu Z; Sheng Z
    J Surg Res; 2006 Dec; 136(2):204-8. PubMed ID: 17056067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunohistochemical staining characteristics of epidermal appendages (hair follicles and eccrine sweat glands) to anti-epidermal keratin antisera.
    Hosokawa M; Ohkohchi K; Tagami H
    Acta Derm Venereol; 1984; 64(6):466-72. PubMed ID: 6084916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression and localization of insulin-like growth factor-1 in normal and post-burn hypertrophic scar tissue in human.
    Ghahary A; Shen YJ; Wang R; Scott PG; Tredget EE
    Mol Cell Biochem; 1998 Jun; 183(1-2):1-9. PubMed ID: 9655173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activated keratinocytes in the epidermis of hypertrophic scars.
    Machesney M; Tidman N; Waseem A; Kirby L; Leigh I
    Am J Pathol; 1998 May; 152(5):1133-41. PubMed ID: 9588880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regeneration of functional sweat gland-like structures by transplanted differentiated bone marrow mesenchymal stem cells.
    Sheng Z; Fu X; Cai S; Lei Y; Sun T; Bai X; Chen M
    Wound Repair Regen; 2009; 17(3):427-35. PubMed ID: 19660052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New concepts on the histogenesis of eccrine neoplasia from keratin expression in the normal eccrine gland, syringoma and poroma.
    Langbein L; Cribier B; Schirmacher P; Praetzel-Wunder S; Peltre B; Schweizer J
    Br J Dermatol; 2008 Sep; 159(3):633-45. PubMed ID: 18647305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transplantation of epidermis of scar tissue on acellular dermal matrix.
    Wang GQ; Xia ZF
    Burns; 2009 May; 35(3):352-5. PubMed ID: 18951705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Expression of secretions of hypothalamus-pituitary-adrenal axis in human hypertrophic scar].
    Liu SJ; Xie YF; Dai LB; Du GW
    Zhonghua Shao Shang Za Zhi; 2011 Dec; 27(6):432-5. PubMed ID: 22340789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Characteristics and effect of three transforming growth factor-beta isoforms and their receptor(I) on scar formation].
    Chen W; Fu XB; Sun TZ; Sun XQ; Sheng ZY
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2002 Jul; 16(4):252-5. PubMed ID: 12181790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microscopic inflammatory foci in burn scars: data from a porcine burn model.
    Wang XQ; Phillips GE; Wilkie I; Greer R; Kimble RM
    J Cutan Pathol; 2010 May; 37(5):530-4. PubMed ID: 19614732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypertrophic scarring is associated with epidermal abnormalities: an immunohistochemical study.
    Andriessen MP; Niessen FB; Van de Kerkhof PC; Schalkwijk J
    J Pathol; 1998 Oct; 186(2):192-200. PubMed ID: 9924436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of hypertrophic scar from inception by using xenogenic (porcine) acellular dermal matrix (ADM) to cover deep second degree burn.
    Feng X; Tan J; Pan Y; Wu Q; Ruan S; Shen R; Chen X; Du Y
    Burns; 2006 May; 32(3):293-8. PubMed ID: 16487662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear spectral imaging of human hypertrophic scar based on two-photon excited fluorescence and second-harmonic generation.
    Chen G; Chen J; Zhuo S; Xiong S; Zeng H; Jiang X; Chen R; Xie S
    Br J Dermatol; 2009 Jul; 161(1):48-55. PubMed ID: 19309369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study of Langerhans cells in normal and pathological human scars. II. Hypertrophic scars.
    Cracco C; Stella M; Teich Alasia S; Filogamo G
    Eur J Histochem; 1992; 36(1):53-65. PubMed ID: 1374665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [A preliminary study on the identification and distribution of epidermal stem cells in different degrees of burn wounds in scalded rats].
    Xie JL; Li TZ; Qi SH; Bian HN; Cheng JD; Xu YB; Liang HZ
    Zhonghua Shao Shang Za Zhi; 2003 Dec; 19(6):344-6. PubMed ID: 14761642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.