These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 15740748)

  • 1. In vitro evolutionary thermostabilization of congerin II: a limited reproduction of natural protein evolution by artificial selection pressure.
    Shionyu-Mitsuyama C; Ito Y; Konno A; Miwa Y; Ogawa T; Muramoto K; Shirai T
    J Mol Biol; 2005 Mar; 347(2):385-97. PubMed ID: 15740748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure based studies of the adaptive diversification process of congerins.
    Shirai T; Shionyu-Mitsuyama C; Ogawa T; Muramoto K
    Mol Divers; 2006 Nov; 10(4):567-73. PubMed ID: 16972013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tracing protein evolution through ancestral structures of fish galectin.
    Konno A; Kitagawa A; Watanabe M; Ogawa T; Shirai T
    Structure; 2011 May; 19(5):711-21. PubMed ID: 21565705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-resolution structure of the conger eel galectin, congerin I, in lactose-liganded and ligand-free forms: emergence of a new structure class by accelerated evolution.
    Shirai T; Mitsuyama C; Niwa Y; Matsui Y; Hotta H; Yamane T; Kamiya H; Ishii C; Ogawa T; Muramoto K
    Structure; 1999 Oct; 7(10):1223-33. PubMed ID: 10545323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstruction of a probable ancestral form of conger eel galectins revealed their rapid adaptive evolution process for specific carbohydrate recognition.
    Konno A; Ogawa T; Shirai T; Muramoto K
    Mol Biol Evol; 2007 Nov; 24(11):2504-14. PubMed ID: 17827170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional and structural characterization of multiple galectins from the skin mucus of conger eel, Conger myriaster.
    Muramoto K; Kagawa D; Sato T; Ogawa T; Nishida Y; Kamiya H
    Comp Biochem Physiol B Biochem Mol Biol; 1999 May; 123(1):33-45. PubMed ID: 10425711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of a conger eel galectin (congerin II) at 1.45A resolution: implication for the accelerated evolution of a new ligand-binding site following gene duplication.
    Shirai T; Matsui Y; Shionyu-Mitsuyama C; Yamane T; Kamiya H; Ishii C; Ogawa T; Muramoto K
    J Mol Biol; 2002 Aug; 321(5):879-89. PubMed ID: 12206768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerated evolution in the protein-coding region of galectin cDNAs, congerin I and congerin II, from skin mucus of conger eel (Conger myriaster).
    Ogawa T; Ishii C; Kagawa D; Muramoto K; Kamiya H
    Biosci Biotechnol Biochem; 1999 Jul; 63(7):1203-8. PubMed ID: 10478448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Possible immune functions of congerin, a mucosal galectin, in the intestinal lumen of Japanese conger eel.
    Nakamura O; Inaga Y; Suzuki S; Tsutsui S; Muramoto K; Kamiya H; Watanabe T
    Fish Shellfish Immunol; 2007 Sep; 23(3):683-92. PubMed ID: 17596964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Geodia cydonium galectin exhibits prototype and chimera-type characteristics and a unique sequence polymorphism within its carbohydrate recognition domain.
    Stalz H; Roth U; Schleuder D; Macht M; Haebel S; Strupat K; Peter-Katalinic J; Hanisch FG
    Glycobiology; 2006 May; 16(5):402-14. PubMed ID: 16449348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein engineering of conger eel galectins by tracing of molecular evolution using probable ancestral mutants.
    Konno A; Yonemaru S; Kitagawa A; Muramoto K; Shirai T; Ogawa T
    BMC Evol Biol; 2010 Feb; 10():43. PubMed ID: 20152053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Allosteric regulation of the carbohydrate-binding ability of a novel conger eel galectin by D-mannoside.
    Watanabe M; Nakamura O; Muramoto K; Ogawa T
    J Biol Chem; 2012 Sep; 287(37):31061-72. PubMed ID: 22810239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex N-glycans are the major ligands for galectin-1, -3, and -8 on Chinese hamster ovary cells.
    Patnaik SK; Potvin B; Carlsson S; Sturm D; Leffler H; Stanley P
    Glycobiology; 2006 Apr; 16(4):305-17. PubMed ID: 16319083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lineage-specific differences in evolutionary mode in a salamander courtship pheromone.
    Palmer CA; Watts RA; Gregg RG; McCall MA; Houck LD; Highton R; Arnold SJ
    Mol Biol Evol; 2005 Nov; 22(11):2243-56. PubMed ID: 16033988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimized variants of the cold shock protein from in vitro selection: structural basis of their high thermostability.
    Max KE; Wunderlich M; Roske Y; Schmid FX; Heinemann U
    J Mol Biol; 2007 Jun; 369(4):1087-97. PubMed ID: 17481655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double affinity amplification of galectin-ligand interactions through arginine-arene interactions: synthetic, thermodynamic, and computational studies with aromatic diamido thiodigalactosides.
    Cumpstey I; Salomonsson E; Sundin A; Leffler H; Nilsson UJ
    Chemistry; 2008; 14(14):4233-45. PubMed ID: 18366047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The speciation of conger eel galectins by rapid adaptive evolution.
    Ogawa T; Shirai T; Shionyu-Mitsuyama C; Yamane T; Kamiya H; Muramoto K
    Glycoconj J; 2002; 19(7-9):451-8. PubMed ID: 14758068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mis-translation of a computationally designed protein yields an exceptionally stable homodimer: implications for protein engineering and evolution.
    Dantas G; Watters AL; Lunde BM; Eletr ZM; Isern NG; Roseman T; Lipfert J; Doniach S; Tompa M; Kuhlman B; Stoddard BL; Varani G; Baker D
    J Mol Biol; 2006 Oct; 362(5):1004-24. PubMed ID: 16949611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tailoring a novel sialic acid-binding lectin from a ricin-B chain-like galactose-binding protein by natural evolution-mimicry.
    Yabe R; Suzuki R; Kuno A; Fujimoto Z; Jigami Y; Hirabayashi J
    J Biochem; 2007 Mar; 141(3):389-99. PubMed ID: 17234683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo molecular evolution reveals biophysical origins of organismal fitness.
    Couñago R; Chen S; Shamoo Y
    Mol Cell; 2006 May; 22(4):441-9. PubMed ID: 16713575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.