BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 15741511)

  • 1. From genome to "venome": molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins.
    Fry BG
    Genome Res; 2005 Mar; 15(3):403-20. PubMed ID: 15741511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assembling an arsenal: origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences.
    Fry BG; Wüster W
    Mol Biol Evol; 2004 May; 21(5):870-83. PubMed ID: 15014162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of an arsenal: structural and functional diversification of the venom system in the advanced snakes (Caenophidia).
    Fry BG; Scheib H; van der Weerd L; Young B; McNaughtan J; Ramjan SF; Vidal N; Poelmann RE; Norman JA
    Mol Cell Proteomics; 2008 Feb; 7(2):215-46. PubMed ID: 17855442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tracking the recruitment and evolution of snake toxins using the evolutionary context provided by the
    Almeida DD; Viala VL; Nachtigall PG; Broe M; Gibbs HL; Serrano SMT; Moura-da-Silva AM; Ho PL; Nishiyama-Jr MY; Junqueira-de-Azevedo ILM
    Proc Natl Acad Sci U S A; 2021 May; 118(20):. PubMed ID: 33972420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic genetic differentiation drives the widespread structural and functional convergent evolution of snake venom proteinaceous toxins.
    Xie B; Dashevsky D; Rokyta D; Ghezellou P; Fathinia B; Shi Q; Richardson MK; Fry BG
    BMC Biol; 2022 Jan; 20(1):4. PubMed ID: 34996434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomics-guided bottom-up and top-down venomics of neonate and adult specimens of the arboreal rear-fanged Brown Treesnake, Boiga irregularis, from Guam.
    Pla D; Petras D; Saviola AJ; Modahl CM; Sanz L; Pérez A; Juárez E; Frietze S; Dorrestein PC; Mackessy SP; Calvete JJ
    J Proteomics; 2018 Mar; 174():71-84. PubMed ID: 29292096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel transcripts in the maxillary venom glands of advanced snakes.
    Fry BG; Scheib H; de L M Junqueira de Azevedo I; Silva DA; Casewell NR
    Toxicon; 2012 Jun; 59(7-8):696-708. PubMed ID: 22465490
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Tan CH; Tan KY; Tan NH
    Toxins (Basel); 2023 Sep; 15(9):. PubMed ID: 37756011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Unusual Metalloprotease-Rich Venom Proteome of the Australian Elapid Snake
    Tasoulis T; Wang CR; Sumner J; Dunstan N; Pukala TL; Isbister GK
    Toxins (Basel); 2022 Apr; 14(5):. PubMed ID: 35622563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemistry and toxicology of proteins and peptides purified from the venom of
    Siigur J; Siigur E
    Toxicon X; 2022 Sep; 15():100131. PubMed ID: 35769869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and molecular characterization of five putative toxins from the venom gland of the snake Philodryas chamissonis (Serpentes: Dipsadidae).
    Urra FA; Pulgar R; Gutiérrez R; Hodar C; Cambiazo V; Labra A
    Toxicon; 2015 Dec; 108():19-31. PubMed ID: 26410112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The venom gland transcriptome of the Desert Massasauga rattlesnake (Sistrurus catenatus edwardsii): towards an understanding of venom composition among advanced snakes (Superfamily Colubroidea).
    Pahari S; Mackessy SP; Kini RM
    BMC Mol Biol; 2007 Dec; 8():115. PubMed ID: 18096037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of snake venom disintegrins by positive Darwinian selection.
    Juárez P; Comas I; González-Candelas F; Calvete JJ
    Mol Biol Evol; 2008 Nov; 25(11):2391-407. PubMed ID: 18701431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colubrid Venom Composition: An -Omics Perspective.
    Junqueira-de-Azevedo IL; Campos PF; Ching AT; Mackessy SP
    Toxins (Basel); 2016 Jul; 8(8):. PubMed ID: 27455326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Restriction and recruitment-gene duplication and the origin and evolution of snake venom toxins.
    Hargreaves AD; Swain MT; Hegarty MJ; Logan DW; Mulley JF
    Genome Biol Evol; 2014 Aug; 6(8):2088-95. PubMed ID: 25079342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic Characterization and Comparison of Malaysian Tropidolaemus wagleri and Cryptelytrops purpureomaculatus Venom Using Shotgun-Proteomics.
    Zainal Abidin SA; Rajadurai P; Chowdhury ME; Ahmad Rusmili MR; Othman I; Naidu R
    Toxins (Basel); 2016 Oct; 8(10):. PubMed ID: 27763534
    [No Abstract]   [Full Text] [Related]  

  • 17. A Review and Database of Snake Venom Proteomes.
    Tasoulis T; Isbister GK
    Toxins (Basel); 2017 Sep; 9(9):. PubMed ID: 28927001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trends in the Evolution of Snake Toxins Underscored by an Integrative Omics Approach to Profile the Venom of the Colubrid Phalotris mertensi.
    Campos PF; Andrade-Silva D; Zelanis A; Paes Leme AF; Rocha MM; Menezes MC; Serrano SM; Junqueira-de-Azevedo Ide L
    Genome Biol Evol; 2016 Aug; 8(8):2266-87. PubMed ID: 27412610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diversity of toxic components from the venom of the evolutionarily distinct black whip snake, Demansia vestigiata.
    St Pierre L; Birrell GW; Earl ST; Wallis TP; Gorman JJ; de Jersey J; Masci PP; Lavin MF
    J Proteome Res; 2007 Aug; 6(8):3093-107. PubMed ID: 17608513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular cloning of disintegrin-like transcript BA-5A from a Bitis arietans venom gland cDNA library: a putative intermediate in the evolution of the long-chain disintegrin bitistatin.
    Juárez P; Wagstaff SC; Oliver J; Sanz L; Harrison RA; Calvete JJ
    J Mol Evol; 2006 Jul; 63(1):142-52. PubMed ID: 16786436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.