These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 15741769)
1. Minimizing the immunogenicity of antibodies for clinical application. Gonzales NR; De Pascalis R; Schlom J; Kashmiri SV Tumour Biol; 2005; 26(1):31-43. PubMed ID: 15741769 [TBL] [Abstract][Full Text] [Related]
2. SDR grafting--a new approach to antibody humanization. Kashmiri SV; De Pascalis R; Gonzales NR; Schlom J Methods; 2005 May; 36(1):25-34. PubMed ID: 15848072 [TBL] [Abstract][Full Text] [Related]
3. SDR grafting of a murine antibody using multiple human germline templates to minimize its immunogenicity. Gonzales NR; Padlan EA; De Pascalis R; Schuck P; Schlom J; Kashmiri SV Mol Immunol; 2004 Jul; 41(9):863-72. PubMed ID: 15261458 [TBL] [Abstract][Full Text] [Related]
4. Humanization by CDR grafting and specificity-determining residue grafting. Kim JH; Hong HJ Methods Mol Biol; 2012; 907():237-45. PubMed ID: 22907355 [TBL] [Abstract][Full Text] [Related]
5. Grafting of "abbreviated" complementarity-determining regions containing specificity-determining residues essential for ligand contact to engineer a less immunogenic humanized monoclonal antibody. De Pascalis R; Iwahashi M; Tamura M; Padlan EA; Gonzales NR; Santos AD; Giuliano M; Schuck P; Schlom J; Kashmiri SV J Immunol; 2002 Sep; 169(6):3076-84. PubMed ID: 12218124 [TBL] [Abstract][Full Text] [Related]
6. Structural correlates of an anticarcinoma antibody: identification of specificity-determining residues (SDRs) and development of a minimally immunogenic antibody variant by retention of SDRs only. Tamura M; Milenic DE; Iwahashi M; Padlan E; Schlom J; Kashmiri SV J Immunol; 2000 Feb; 164(3):1432-41. PubMed ID: 10640759 [TBL] [Abstract][Full Text] [Related]
7. Antibody humanization by redesign of complementarity-determining region residues proximate to the acceptor framework. Hanf KJ; Arndt JW; Chen LL; Jarpe M; Boriack-Sjodin PA; Li Y; van Vlijmen HW; Pepinsky RB; Simon KJ; Lugovskoy A Methods; 2014 Jan; 65(1):68-76. PubMed ID: 23816785 [TBL] [Abstract][Full Text] [Related]
8. Removal of amphipathic epitopes from genetically engineered antibodies: production of modified immunoglobulins with reduced immunogenicity. Mateo C; Lombardero J; Moreno E; Morales A; Bombino G; Coloma J; Wims L; Morrison SL; Pérez R Hybridoma; 2000 Dec; 19(6):463-71. PubMed ID: 11152398 [TBL] [Abstract][Full Text] [Related]
9. Development of a minimally immunogenic variant of humanized anti-carcinoma monoclonal antibody CC49. Kashmiri SV; Iwahashi M; Tamura M; Padlan EA; Milenic DE; Schlom J Crit Rev Oncol Hematol; 2001 Apr; 38(1):3-16. PubMed ID: 11255077 [TBL] [Abstract][Full Text] [Related]
10. A general approach to antibody thermostabilization. McConnell AD; Zhang X; Macomber JL; Chau B; Sheffer JC; Rahmanian S; Hare E; Spasojevic V; Horlick RA; King DJ; Bowers PM MAbs; 2014; 6(5):1274-82. PubMed ID: 25517312 [TBL] [Abstract][Full Text] [Related]
11. Humanization of a murine monoclonal antibody by simultaneous optimization of framework and CDR residues. Wu H; Nie Y; Huse WD; Watkins JD J Mol Biol; 1999 Nov; 294(1):151-62. PubMed ID: 10556035 [TBL] [Abstract][Full Text] [Related]
12. The critical role of arginine residues in the binding of human monoclonal antibodies to cardiolipin. Giles I; Lambrianides N; Latchman D; Chen P; Chukwuocha R; Isenberg D; Rahman A Arthritis Res Ther; 2005; 7(1):R47-56. PubMed ID: 15642142 [TBL] [Abstract][Full Text] [Related]
13. Non-classical binding of a polyreactive α-type anti-idiotypic antibody to B cells. Hernández T; de Acosta CM; López-Requena A; Moreno E; Alonso R; Fernández-Marrero Y; Pérez R Mol Immunol; 2010; 48(1-3):98-108. PubMed ID: 20952071 [TBL] [Abstract][Full Text] [Related]
14. Humanization of a mouse monoclonal antibody that blocks the epidermal growth factor receptor: recovery of antagonistic activity. Mateo C; Moreno E; Amour K; Lombardero J; Harris W; Pérez R Immunotechnology; 1997 Mar; 3(1):71-81. PubMed ID: 9154469 [TBL] [Abstract][Full Text] [Related]
15. "Superhumanized" antibodies: reduction of immunogenic potential by complementarity-determining region grafting with human germline sequences: application to an anti-CD28. Tan P; Mitchell DA; Buss TN; Holmes MA; Anasetti C; Foote J J Immunol; 2002 Jul; 169(2):1119-25. PubMed ID: 12097421 [TBL] [Abstract][Full Text] [Related]
17. A universal combinatorial design of antibody framework to graft distinct CDR sequences: a bioinformatics approach. Haidar JN; Yuan QA; Zeng L; Snavely M; Luna X; Zhang H; Zhu W; Ludwig DL; Zhu Z Proteins; 2012 Mar; 80(3):896-912. PubMed ID: 22180101 [TBL] [Abstract][Full Text] [Related]
18. The immunogenicity of humanized and fully human antibodies: residual immunogenicity resides in the CDR regions. Harding FA; Stickler MM; Razo J; DuBridge RB MAbs; 2010; 2(3):256-65. PubMed ID: 20400861 [TBL] [Abstract][Full Text] [Related]
19. CDR substitutions of a humanized monoclonal antibody (CC49): contributions of individual CDRs to antigen binding and immunogenicity. Iwahashi M; Milenic DE; Padlan EA; Bei R; Schlom J; Kashmiri SV Mol Immunol; 1999; 36(15-16):1079-91. PubMed ID: 10698310 [TBL] [Abstract][Full Text] [Related]
20. Beyond CDR-grafting: Structure-guided humanization of framework and CDR regions of an anti-myostatin antibody. Apgar JR; Mader M; Agostinelli R; Benard S; Bialek P; Johnson M; Gao Y; Krebs M; Owens J; Parris K; St Andre M; Svenson K; Morris C; Tchistiakova L MAbs; 2016 Oct; 8(7):1302-1318. PubMed ID: 27625211 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]