These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 15742562)

  • 41. Experimental analysis of parallel excitation using dedicated coil setups and simultaneous RF transmission on multiple channels.
    Ullmann P; Junge S; Wick M; Seifert F; Ruhm W; Hennig J
    Magn Reson Med; 2005 Oct; 54(4):994-1001. PubMed ID: 16155886
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Extended focus depth for Fourier domain optical coherence microscopy.
    Leitgeb RA; Villiger M; Bachmann AH; Steinmann L; Lasser T
    Opt Lett; 2006 Aug; 31(16):2450-2. PubMed ID: 16880852
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effectiveness of synthetic aperture focusing and coherence factor weighting for intravascular ultrasound imaging.
    Kang S; Lee J; Chang JH
    Ultrasonics; 2021 May; 113():106364. PubMed ID: 33517139
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dual-Frequency CMUT Arrays for Multiband Ultrasound Imaging Applications.
    Maadi M; Ceroici C; Zemp RJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Jul; 68(7):2532-2542. PubMed ID: 33625982
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High-resolution imaging using a wideband MIMO radar system with two distributed arrays.
    Wang DW; Ma XY; Chen AL; Su Y
    IEEE Trans Image Process; 2010 May; 19(5):1280-9. PubMed ID: 20051345
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Coded excitation and annular arrays for high-frequency ultrasound imaging.
    Mamou J; Ketterling JA
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2408-11. PubMed ID: 17946112
    [TBL] [Abstract][Full Text] [Related]  

  • 47. 2-D array for 3-D ultrasound imaging using synthetic aperture techniques.
    Daher NM; Yen JT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 May; 53(5):912-24. PubMed ID: 16764446
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Stand-alone front-end system for high- frequency, high-frame-rate coded excitation ultrasonic imaging.
    Park J; Hu C; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Dec; 58(12):2620-30. PubMed ID: 23443698
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Harmonic 3-D echocardiography with a fast-rotating ultrasound transducer.
    Voormolen MM; Krenning BJ; Lancée CT; ten Cate FJ; Roelandt JR; van der Steen AF; de Jong N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Oct; 53(10):1739-48. PubMed ID: 17036783
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Analyzing spatial coherence using a single mobile field sensor.
    Fridman P
    J Opt Soc Am A Opt Image Sci Vis; 2007 Apr; 24(4):1069-70. PubMed ID: 17361293
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Task-based optimization and performance assessment in optical coherence imaging.
    Rolland J; O'Daniel J; Akcay C; DeLemos T; Lee KS; Cheong KI; Clarkson E; Chakrabarti R; Ferris R
    J Opt Soc Am A Opt Image Sci Vis; 2005 Jun; 22(6):1132-42. PubMed ID: 15984486
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Design of a front-end integrated circuit for 3D acoustic imaging using 2D CMUT arrays.
    Ciçek I; Bozkurt A; Karaman M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Dec; 52(12):2235-41. PubMed ID: 16463489
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Spatio-spectral color filter array design for optimal image recovery.
    Hirakawa K; Wolfe PJ
    IEEE Trans Image Process; 2008 Oct; 17(10):1876-90. PubMed ID: 18784035
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator.
    Zhang J; Nelson JS; Chen Z
    Opt Lett; 2005 Jan; 30(2):147-9. PubMed ID: 15675695
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nonparaxial multi-Gaussian beam models and measurement models for phased array transducers.
    Zhao X; Gang T
    Ultrasonics; 2009 Jan; 49(1):126-30. PubMed ID: 18774152
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Performance of two dimensional displacement and strain estimation techniques using a phased array transducer.
    Lopata RG; Nillesen MM; Hansen HH; Gerrits IH; Thijssen JM; de Korte CL
    Ultrasound Med Biol; 2009 Dec; 35(12):2031-41. PubMed ID: 19854565
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Novel splittable N-Tx/2N-Rx transceiver phased array to optimize both signal-to-noise ratio and transmit efficiency at 9.4T.
    Avdievich NI; Giapitzakis IA; Henning A
    Magn Reson Med; 2016 Nov; 76(5):1621-1628. PubMed ID: 26612491
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Photoacoustic tomography imaging using a 4f acoustic lens and peak-hold technology.
    Wei Y; Tang Z; Zhang H; He Y; Liu H
    Opt Express; 2008 Apr; 16(8):5314-9. PubMed ID: 18542633
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Design and performance of a planar-array MIT system with normal sensor alignment.
    Igney CH; Watson S; Williams RJ; Griffiths H; Dössel O
    Physiol Meas; 2005 Apr; 26(2):S263-78. PubMed ID: 15798239
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer.
    Zemp RJ; Bitton R; Li ML; Shung KK; Stoica G; Wang LV
    J Biomed Opt; 2007; 12(1):010501. PubMed ID: 17343475
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.