These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 15742569)

  • 1. Half-thickness inversion layer high-frequency ultrasonic transducers using LiNbO3 single crystal.
    Zhou Q; Cannata JM; Guo H; Huang C; Marmarelis VZ; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jan; 52(1):127-33. PubMed ID: 15742569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and modeling of inversion layer ultrasonic transducers using LiNbO3 single crystal.
    Zhou QF; Cannata J; Kirk Shung K
    Ultrasonics; 2006 Dec; 44 Suppl 1():e607-11. PubMed ID: 16797635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broadband ultrasonic transducers using a LiNbO3 plate with a ferroelectric inversion layer.
    Nakamura K; Fukazawa K; Yamada K; Saito S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Nov; 50(11):1558-62. PubMed ID: 14682639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadband focusing ultrasonic transducers based on dimpled LiNbO3 plate with inversion layer.
    Chen J; Dai JY; Zhang C; Zhang Z; Feng G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Dec; 59(12):2797-802. PubMed ID: 23221229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An ultrasonic transducer for second harmonic imaging using a LiNbO3 plate with a local ferroelectric inversion layer.
    Nakamura K; Fukazawa K; Yamada K; Saito S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Mar; 53(3):651-5. PubMed ID: 16555775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bandwidth improvement of LiNbO3 ultrasonic transducers by half-concaved inversion layer approach.
    Chen J; Dai JY; Zhang C; Zhang ZT; Feng GP
    Rev Sci Instrum; 2012 Nov; 83(11):114903. PubMed ID: 23206085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mass-spring matching layers for high-frequency ultrasound transducers: a new technique using vacuum deposition.
    Brown J; Sharma S; Leadbetter J; Cochran S; Adamson R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Nov; 61(11):1911-21. PubMed ID: 25389169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PMN-PT single crystal, high-frequency ultrasonic needle transducers for pulsed-wave Doppler application.
    Zhou Q; Xu X; Gottlieb EJ; Sun L; Cannata JM; Ameri H; Humayun MS; Han P; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Mar; 54(3):668-75. PubMed ID: 17375836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of efficient, broadband single-element (20-80 MHz) ultrasonic transducers for medical imaging applications.
    Cannata JM; Ritter TA; Chen WH; Silverman RH; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Nov; 50(11):1548-57. PubMed ID: 14682638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of matching layers for high-frequency ultrasonic transducers.
    Fei C; Ma J; Chiu CT; Williams JA; Fong W; Chen Z; Zhu B; Xiong R; Shi J; Hsiai TK; Shung KK; Zhou Q
    Appl Phys Lett; 2015 Sep; 107(12):123505. PubMed ID: 26445518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impedance matching network for high frequency ultrasonic transducer for cellular applications.
    Kim MG; Yoon S; Kim HH; Shung KK
    Ultrasonics; 2016 Feb; 65():258-67. PubMed ID: 26442434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of Ultrasonic Transducer Bandwidth by Acoustic Impedance Gradient Matching Layer.
    Zhu K; Ma J; Qi X; Shen B; Liu Y; Sun E; Zhang R
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A New High-Temperature Ultrasonic Transducer for Continuous Inspection.
    Amini MH; Sinclair AN; Coyle TW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Mar; 63(3):448-55. PubMed ID: 26829787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An analytical model of multilayer ultrasonic transducers with an inversion layer.
    Huang C; Marmarelis VZ; Zhou Q; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Mar; 52(3):469-79. PubMed ID: 15857055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porous ceramics as backing element for high-temperature transducers.
    Amini M; Coyle T; Sinclair T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Feb; 62(2):360-72. PubMed ID: 25643085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling and simulation of high-frequency (100 MHz) ultrasonic linear arrays based on single crystal LiNbO3.
    Zhang JY; Xu WJ; Carlier J; Ji XM; Nongaillard B; Queste S; Huang YP
    Ultrasonics; 2012 Jan; 52(1):47-53. PubMed ID: 21764097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and fabrication of PZN-7%PT single crystal high frequency angled needle ultrasound transducers.
    Zhou Q; Wu D; Jin J; Hu CH; Xu X; Williams J; Cannata JM; Lim L; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1394-9. PubMed ID: 18599429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfabrication of stacks of acoustic matching layers for 15 MHz ultrasonic transducers.
    Manh T; Nguyen AT; Johansen TF; Hoff L
    Ultrasonics; 2014 Feb; 54(2):614-20. PubMed ID: 24041498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and Micro-Fabrication of Focused High-Frequency Needle Transducers for Medical Imaging.
    Nguyen TP; Choi J; Nguyen VT; Mondal S; Bui NT; Vu DD; Park S; Oh J
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging with lithium niobate/epoxy composites.
    Schmarje N; Saillant JF; Kirk KJ; Cochran S
    Ultrasonics; 2004 Apr; 42(1-9):439-42. PubMed ID: 15047325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.