These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

755 related articles for article (PubMed ID: 15743620)

  • 1. Chemical reactions between arsenic and zero-valent iron in water.
    Bang S; Johnson MD; Korfiatis GP; Meng X
    Water Res; 2005 Mar; 39(5):763-70. PubMed ID: 15743620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of arsenic from water by zero-valent iron.
    Bang S; Korfiatis GP; Meng X
    J Hazard Mater; 2005 May; 121(1-3):61-7. PubMed ID: 15885407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron.
    Leupin OX; Hug SJ
    Water Res; 2005 May; 39(9):1729-40. PubMed ID: 15899271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal.
    Zhang G; Qu J; Liu H; Liu R; Wu R
    Water Res; 2007 May; 41(9):1921-8. PubMed ID: 17382991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative study of arsenic removal by iron using electrocoagulation and chemical coagulation.
    Lakshmanan D; Clifford DA; Samanta G
    Water Res; 2010 Nov; 44(19):5641-52. PubMed ID: 20605038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of arsenic from water: effect of calcium ions on As(III) removal in the KMnO(4)-Fe(II) process.
    Guan X; Ma J; Dong H; Jiang L
    Water Res; 2009 Dec; 43(20):5119-28. PubMed ID: 19201439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of As(V) and As(III) by reclaimed iron-oxide coated sands.
    Hsu JC; Lin CJ; Liao CH; Chen ST
    J Hazard Mater; 2008 May; 153(1-2):817-26. PubMed ID: 17988793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of humic acid on arsenic(V) removal by zero-valent iron from groundwater with special references to corrosion products analyses.
    Rao P; Mak MS; Liu T; Lai KC; Lo IM
    Chemosphere; 2009 Apr; 75(2):156-62. PubMed ID: 19157491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of surface properties of iron hydroxide-coated alumina adsorbent prepared for removal of arsenic from drinking water.
    Hlavay J; Polyák K
    J Colloid Interface Sci; 2005 Apr; 284(1):71-7. PubMed ID: 15752786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of co-present chromate and arsenate by zero-valent iron in groundwater with humic acid and bicarbonate.
    Liu T; Rao P; Mak MS; Wang P; Lo IM
    Water Res; 2009 May; 43(9):2540-8. PubMed ID: 19321187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenate removal by zero valent iron: batch and column tests.
    Biterna M; Arditsoglou A; Tsikouras E; Voutsa D
    J Hazard Mater; 2007 Nov; 149(3):548-52. PubMed ID: 17689184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of As(V) from water using Mg-Fe-based hydrotalcite (FeHT).
    Türk T; Alp I; Deveci H
    J Hazard Mater; 2009 Nov; 171(1-3):665-70. PubMed ID: 19589641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic sorption onto laterite iron concretions: temperature effect.
    Partey F; Norman D; Ndur S; Nartey R
    J Colloid Interface Sci; 2008 May; 321(2):493-500. PubMed ID: 18346752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and evaluation of iron-chitosan composites for removal of As(III) and As(V) from arsenic contaminated real life groundwater.
    Gupta A; Chauhan VS; Sankararamakrishnan N
    Water Res; 2009 Aug; 43(15):3862-70. PubMed ID: 19577786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of arsenate and molybdate on removal of selenate from an aqueous solution by zero-valent iron.
    Zhang Y; Amrhein C; Frankenberger WT
    Sci Total Environ; 2005 Nov; 350(1-3):1-11. PubMed ID: 16227069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel two-step coprecipitation process using Fe(III) and Al(III) for the removal and immobilization of arsenate from acidic aqueous solution.
    Jia Y; Zhang D; Pan R; Xu L; Demopoulos GP
    Water Res; 2012 Feb; 46(2):500-8. PubMed ID: 22142599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of adsorbent dose, its particle size and initial arsenic concentration on the removal of arsenic, iron and manganese from simulated ground water by Fe3+ impregnated activated carbon.
    Mondal P; Majumder CB; Mohanty B
    J Hazard Mater; 2008 Feb; 150(3):695-702. PubMed ID: 17574333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of arsenic from water by supported nano zero-valent iron on activated carbon.
    Zhu H; Jia Y; Wu X; Wang H
    J Hazard Mater; 2009 Dec; 172(2-3):1591-6. PubMed ID: 19733972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment of groundwater polluted by arsenic compounds by zero valent iron.
    Sun H; Wang L; Zhang R; Sui J; Xu G
    J Hazard Mater; 2006 Feb; 129(1-3):297-303. PubMed ID: 16194593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coprecipitation of arsenate with iron(III) in aqueous sulfate media: effect of time, lime as base and co-ions on arsenic retention.
    Jia Y; Demopoulos GP
    Water Res; 2008 Feb; 42(3):661-8. PubMed ID: 17825873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.