These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 15743936)

  • 1. Percolation of the phd repressor-operator interface.
    Zhao X; Magnuson RD
    J Bacteriol; 2005 Mar; 187(6):1901-12. PubMed ID: 15743936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modular organization of the Phd repressor/antitoxin protein.
    Smith JA; Magnuson RD
    J Bacteriol; 2004 May; 186(9):2692-8. PubMed ID: 15090510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corepression of the P1 addiction operon by Phd and Doc.
    Magnuson R; Yarmolinsky MB
    J Bacteriol; 1998 Dec; 180(23):6342-51. PubMed ID: 9829946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An intrinsically disordered entropic switch determines allostery in Phd-Doc regulation.
    Garcia-Pino A; De Gieter S; Talavera A; De Greve H; Efremov RG; Loris R
    Nat Chem Biol; 2016 Jul; 12(7):490-6. PubMed ID: 27159580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autoregulation of the plasmid addiction operon of bacteriophage P1.
    Magnuson R; Lehnherr H; Mukhopadhyay G; Yarmolinsky MB
    J Biol Chem; 1996 Aug; 271(31):18705-10. PubMed ID: 8702525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural mechanism of transcriptional autorepression of the Escherichia coli RelB/RelE antitoxin/toxin module.
    Li GY; Zhang Y; Inouye M; Ikura M
    J Mol Biol; 2008 Jun; 380(1):107-19. PubMed ID: 18501926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Messenger RNA interferase RelE controls relBE transcription by conditional cooperativity.
    Overgaard M; Borch J; Jørgensen MG; Gerdes K
    Mol Microbiol; 2008 Aug; 69(4):841-57. PubMed ID: 18532983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of PTS gene expression by the homologous transcriptional regulators, Mlc and NagC, in Escherichia coli (or how two similar repressors can behave differently).
    Plumbridge J
    J Mol Microbiol Biotechnol; 2001 Jul; 3(3):371-80. PubMed ID: 11361067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A small protein-protein interaction domain common to KlcB and global regulators KorA and TrbA of promiscuous IncP plasmids.
    Bhattacharyya A; Figurski DH
    J Mol Biol; 2001 Jun; 310(1):51-67. PubMed ID: 11419936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the Phd repressor-antitoxin boundary.
    McKinley JE; Magnuson RD
    J Bacteriol; 2005 Jan; 187(2):765-70. PubMed ID: 15629948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcription regulation in thermophilic bacteria: high resolution contact probing of Bacillus stearothermophilus and Thermotoga neapolitana arginine repressor-operator interactions.
    Song H; Wang H; Gigot D; Dimova D; Sakanyan V; Glansdorff N; Charlier D
    J Mol Biol; 2002 Jan; 315(3):255-74. PubMed ID: 11786010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nag repressor-operator interactions: protein-DNA contacts cover more than two turns of the DNA helix.
    Plumbridge J; Kolb A
    J Mol Biol; 1995 Jun; 249(5):890-902. PubMed ID: 7791215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rules of Expansion: an Updated Consensus Operator Site for the CopR-CopY Family of Bacterial Copper Exporter System Repressors.
    O'Brien H; Alvin JW; Menghani SV; Sanchez-Rosario Y; Van Doorslaer K; Johnson MDL
    mSphere; 2020 May; 5(3):. PubMed ID: 32461276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carboxyl-terminal domain dimer interface mutant 434 repressors have altered dimerization and DNA binding specificities.
    Donner AL; Paa K; Koudelka GB
    J Mol Biol; 1998 Nov; 283(5):931-46. PubMed ID: 9799634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A phospho-sugar binding domain homologous to NagB enzymes regulates the activity of the central glycolytic genes repressor.
    Doan T; Martin L; Zorrilla S; Chaix D; Aymerich S; Labesse G; Declerck N
    Proteins; 2008 Jun; 71(4):2038-50. PubMed ID: 18186488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Operator search by mutant Lac repressors.
    Barker A; Fickert R; Oehler S; Müller-hill B
    J Mol Biol; 1998 May; 278(3):549-58. PubMed ID: 9600838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamics of the interactions of lac repressor with variants of the symmetric lac operator: effects of converting a consensus site to a non-specific site.
    Frank DE; Saecker RM; Bond JP; Capp MW; Tsodikov OV; Melcher SE; Levandoski MM; Record MT
    J Mol Biol; 1997 Apr; 267(5):1186-206. PubMed ID: 9150406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for operator and antirepressor recognition by Myxococcus xanthus CarA repressor.
    Navarro-Avilés G; Jiménez MA; Pérez-Marín MC; González C; Rico M; Murillo FJ; Elías-Arnanz M; Padmanabhan S
    Mol Microbiol; 2007 Feb; 63(4):980-94. PubMed ID: 17233828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein-DNA recognition.
    Pabo CO; Sauer RT
    Annu Rev Biochem; 1984; 53():293-321. PubMed ID: 6236744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of repressor and transcriptional attenuator systems for control of amino acid biosynthetic operons.
    Elf J; Berg OG; Ehrenberg M
    J Mol Biol; 2001 Nov; 313(5):941-54. PubMed ID: 11700051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.