BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 15743940)

  • 1. Menaquinone-specific prenyl reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus.
    Hemmi H; Takahashi Y; Shibuya K; Nakayama T; Nishino T
    J Bacteriol; 2005 Mar; 187(6):1937-44. PubMed ID: 15743940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geranylgeranyl reductase involved in the biosynthesis of archaeal membrane lipids in the hyperthermophilic archaeon Archaeoglobus fulgidus.
    Murakami M; Shibuya K; Nakayama T; Nishino T; Yoshimura T; Hemmi H
    FEBS J; 2007 Feb; 274(3):805-14. PubMed ID: 17288560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. WrbA from Escherichia coli and Archaeoglobus fulgidus is an NAD(P)H:quinone oxidoreductase.
    Patridge EV; Ferry JG
    J Bacteriol; 2006 May; 188(10):3498-506. PubMed ID: 16672604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and characterization of a novel ferric reductase from the hyperthermophilic Archaeon Archaeoglobus fulgidus.
    Vadas A; Monbouquette HG; Johnson E; Schröder I
    J Biol Chem; 1999 Dec; 274(51):36715-21. PubMed ID: 10593977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen detoxification in the strict anaerobic archaeon Archaeoglobus fulgidus: superoxide scavenging by neelaredoxin.
    Abreu IA; Saraiva LM; Carita J; Huber H; Stetter KO; Cabelli D; Teixeira M
    Mol Microbiol; 2000 Oct; 38(2):322-34. PubMed ID: 11069658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfite reductase and APS reductase from Archaeoglobus fulgidus.
    Dahl C; Trüper HG
    Methods Enzymol; 2001; 331():427-41. PubMed ID: 11265481
    [No Abstract]   [Full Text] [Related]  

  • 7. Structure of the F420H2:quinone oxidoreductase of Archaeoglobus fulgidus identification and overproduction of the F420H2-oxidizing subunit.
    Brüggemann H; Falinski F; Deppenmeier U
    Eur J Biochem; 2000 Sep; 267(18):5810-4. PubMed ID: 10971593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developing structure-based models to predict substrate specificity of D-group (Type II) molybdenum enzymes: application to a molybdo-enzyme of unknown function from Archaeoglobus fulgidus.
    Dridge EJ; Richardson DJ; Lewis RJ; Butler CS
    Biochem Soc Trans; 2006 Feb; 34(Pt 1):118-21. PubMed ID: 16417498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of archaeal highly thermostable L-aspartate dehydrogenase/NAD/citrate ternary complex.
    Yoneda K; Sakuraba H; Tsuge H; Katunuma N; Ohshima T
    FEBS J; 2007 Aug; 274(16):4315-25. PubMed ID: 17651440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two distinct heterodisulfide reductase-like enzymes in the sulfate-reducing archaeon Archaeoglobus profundus.
    Mander GJ; Pierik AJ; Huber H; Hedderich R
    Eur J Biochem; 2004 Mar; 271(6):1106-16. PubMed ID: 15009189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning, overexpression, and properties of a new thermophilic and thermostable esterase with sequence similarity to hormone-sensitive lipase subfamily from the archaeon Archaeoglobus fulgidus.
    Manco G; Giosuè E; D'Auria S; Herman P; Carrea G; Rossi M
    Arch Biochem Biophys; 2000 Jan; 373(1):182-92. PubMed ID: 10620337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The first archaeal L-aspartate dehydrogenase from the hyperthermophile Archaeoglobus fulgidus: gene cloning and enzymological characterization.
    Yoneda K; Kawakami R; Tagashira Y; Sakuraba H; Goda S; Ohshima T
    Biochim Biophys Acta; 2006 Jun; 1764(6):1087-93. PubMed ID: 16731057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallization and phasing of alanine dehydrogenase from Archaeoglobus fulgidus.
    Smith N; Mayhew M; Robinson H; Héroux A; Charlton D; Holden MJ; Gallagher DT
    Acta Crystallogr D Biol Crystallogr; 2003 Dec; 59(Pt 12):2328-31. PubMed ID: 14646110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. H(2)O(2)-forming NADH oxidase with diaphorase (cytochrome) activity from Archaeoglobus fulgidus.
    Reed DW; Millstein J; Hartzell PL
    J Bacteriol; 2001 Dec; 183(24):7007-16. PubMed ID: 11717257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular characterization of H2O2-forming NADH oxidases from Archaeoglobus fulgidus.
    Kengen SW; van der Oost J; de Vos WM
    Eur J Biochem; 2003 Jul; 270(13):2885-94. PubMed ID: 12823559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anaerobic oxidation of long-chain n-alkanes by the hyperthermophilic sulfate-reducing archaeon, Archaeoglobus fulgidus.
    Khelifi N; Amin Ali O; Roche P; Grossi V; Brochier-Armanet C; Valette O; Ollivier B; Dolla A; Hirschler-Réa A
    ISME J; 2014 Nov; 8(11):2153-66. PubMed ID: 24763368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxaloacetate decarboxylase of Archaeoglobus fulgidus: cloning of genes and expression in Escherichia coli.
    Dahinden P; Pos KM; Taralczak M; Dimroth P
    Arch Microbiol; 2004 Nov; 182(5):414-20. PubMed ID: 15490124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IscS from Archaeoglobus fulgidus has no desulfurase activity but may provide a cysteine ligand for [Fe2S2] cluster assembly.
    Pagnier A; Nicolet Y; Fontecilla-Camps JC
    Biochim Biophys Acta; 2015 Jun; 1853(6):1457-63. PubMed ID: 25447670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tryptophan repressor-binding proteins from Escherichia coli and Archaeoglobus fulgidus as new catalysts for 1,4-dihydronicotinamide adenine dinucleotide-dependent amperometric biosensors and biofuel cells.
    Zafar MN; Tasca F; Gorton L; Patridge EV; Ferry JG; Nöll G
    Anal Chem; 2009 May; 81(10):4082-8. PubMed ID: 19438267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategies for increasing heterologous expression of a thermostable esterase from Archaeoglobus fulgidus in Escherichia coli.
    Kim J; Kim SI; Hong E; Ryu Y
    Protein Expr Purif; 2016 Nov; 127():98-104. PubMed ID: 27449918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.