BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 15743958)

  • 1. Repression of the pyr operon in Lactobacillus plantarum prevents its ability to grow at low carbon dioxide levels.
    Nicoloff H; Elagöz A; Arsène-Ploetze F; Kammerer B; Martinussen J; Bringel F
    J Bacteriol; 2005 Mar; 187(6):2093-104. PubMed ID: 15743958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of the pyr operon of Lactobacillus plantarum is regulated by inorganic carbon availability through a second regulator, PyrR2, homologous to the pyrimidine-dependent regulator PyrR1.
    Arsène-Ploetze F; Kugler V; Martinussen J; Bringel F
    J Bacteriol; 2006 Dec; 188(24):8607-16. PubMed ID: 17041052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low carbamoyl phosphate pools may drive Lactobacillus plantarum CO2-dependent growth phenotype.
    Bringel F; Vuilleumier S; Arsène-Ploetze F
    J Mol Microbiol Biotechnol; 2008; 14(1-3):22-30. PubMed ID: 17957107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uracil salvage pathway in Lactobacillus plantarum: Transcription and genetic studies.
    Arsène-Ploetze F; Nicoloff H; Kammerer B; Martinussen J; Bringel F
    J Bacteriol; 2006 Jul; 188(13):4777-86. PubMed ID: 16788187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Lactobacillus plantarum, carbamoyl phosphate is synthesized by two carbamoyl-phosphate synthetases (CPS): carbon dioxide differentiates the arginine-repressed from the pyrimidine-regulated CPS.
    Nicoloff H; Hubert JC; Bringel F
    J Bacteriol; 2000 Jun; 182(12):3416-22. PubMed ID: 10852872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lactobacillus plantarum response to inorganic carbon concentrations: PyrR2-dependent and -independent transcription regulation of genes involved in arginine and nucleotide metabolism.
    Bringel F; Hammann P; Kugler V; Arsène-Ploetze F
    Microbiology (Reading); 2008 Sep; 154(Pt 9):2629-2640. PubMed ID: 18757797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyrimidine regulation of the Escherichia coli and Salmonella typhimurium carAB operons: CarP and integration host factor (IHF) modulate the methylation status of a GATC site present in the control region.
    Charlier D; Gigot D; Huysveld N; Roovers M; Piérard A; Glansdorff N
    J Mol Biol; 1995 Jul; 250(4):383-91. PubMed ID: 7616563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two arginine repressors regulate arginine biosynthesis in Lactobacillus plantarum.
    Nicoloff H; Arsène-Ploetze F; Malandain C; Kleerebezem M; Bringel F
    J Bacteriol; 2004 Sep; 186(18):6059-69. PubMed ID: 15342575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutations in Bacillus subtilis PyrR, the pyr regulatory protein, with defects in regulation by pyrimidines.
    Ghim SY; Switzer RL
    FEMS Microbiol Lett; 1996 Mar; 137(1):13-8. PubMed ID: 8935652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purine and pyrimidine-specific repression of the Escherichia coli carAB operon are functionally and structurally coupled.
    Devroede N; Thia-Toong TL; Gigot D; Maes D; Charlier D
    J Mol Biol; 2004 Feb; 336(1):25-42. PubMed ID: 14741201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of cis-acting mutations in the first attenuator region of the Bacillus subtilis pyr operon that are defective in pyrimidine-mediated regulation of expression.
    Ghim SY; Switzer RL
    J Bacteriol; 1996 Apr; 178(8):2351-5. PubMed ID: 8636037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of pyr gene expression in Mycobacterium smegmatis by PyrR-dependent translational repression.
    Fields CJ; Switzer RL
    J Bacteriol; 2007 Sep; 189(17):6236-45. PubMed ID: 17601781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The pyrimidine operon pyrRPB-carA from Lactococcus lactis.
    Martinussen J; Schallert J; Andersen B; Hammer K
    J Bacteriol; 2001 May; 183(9):2785-94. PubMed ID: 11292797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional pausing in the Bacillus subtilis pyr operon in vitro: a role in transcriptional attenuation?
    Zhang H; Switzer RL
    J Bacteriol; 2003 Aug; 185(16):4764-71. PubMed ID: 12896995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pyr RNA binding to the Bacillus caldolyticus PyrR attenuation protein - characterization and regulation by uridine and guanosine nucleotides.
    Jørgensen CM; Fields CJ; Chander P; Watt D; Burgner JW; Smith JL; Switzer RL
    FEBS J; 2008 Feb; 275(4):655-70. PubMed ID: 18190533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of the Bacillus subtilis pyrimidine biosynthetic (pyr) gene cluster by an autogenous transcriptional attenuation mechanism.
    Turner RJ; Lu Y; Switzer RL
    J Bacteriol; 1994 Jun; 176(12):3708-22. PubMed ID: 8206849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional attenuation of the Bacillus subtilis pyr operon by the PyrR regulatory protein and uridine nucleotides in vitro.
    Lu Y; Switzer RL
    J Bacteriol; 1996 Dec; 178(24):7206-11. PubMed ID: 8955403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Function of RNA secondary structures in transcriptional attenuation of the Bacillus subtilis pyr operon.
    Lu Y; Turner RJ; Switzer RL
    Proc Natl Acad Sci U S A; 1996 Dec; 93(25):14462-7. PubMed ID: 8962074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of carbamoyl phosphate synthetase of Streptomyces spp.
    Vaishnav P; Randev S; Jatiani S; Aggarwal S; Keharia H; Vyas PR; Nareshkumar G; Archana G
    Indian J Exp Biol; 2000 Sep; 38(9):931-5. PubMed ID: 12561954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of ammonium ions on hepatic de novo pyrimidine biosynthesis.
    Monks A; Chisena CA; Cysyk RL
    Arch Biochem Biophys; 1985 Jan; 236(1):1-10. PubMed ID: 2981502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.