BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 15744744)

  • 1. Oxidative damage is a potential cause of cone cell death in retinitis pigmentosa.
    Shen J; Yang X; Dong A; Petters RM; Peng YW; Wong F; Campochiaro PA
    J Cell Physiol; 2005 Jun; 203(3):457-64. PubMed ID: 15744744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antioxidants reduce cone cell death in a model of retinitis pigmentosa.
    Komeima K; Rogers BS; Lu L; Campochiaro PA
    Proc Natl Acad Sci U S A; 2006 Jul; 103(30):11300-5. PubMed ID: 16849425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term preservation of cone photoreceptors and visual acuity in rd10 mutant mice exposed to continuous environmental enrichment.
    Barone I; Novelli E; Strettoi E
    Mol Vis; 2014; 20():1545-56. PubMed ID: 25489227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanism of cone cell death in Retinitis Pigmentosa.
    Campochiaro PA; Mir TA
    Prog Retin Eye Res; 2018 Jan; 62():24-37. PubMed ID: 28962928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss of cone molecular markers in rhodopsin-mutant human retinas with retinitis pigmentosa.
    John SK; Smith JE; Aguirre GD; Milam AH
    Mol Vis; 2000 Nov; 6():204-15. PubMed ID: 11063754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antioxidants slow photoreceptor cell death in mouse models of retinitis pigmentosa.
    Komeima K; Rogers BS; Campochiaro PA
    J Cell Physiol; 2007 Dec; 213(3):809-15. PubMed ID: 17520694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced inspired oxygen decreases retinal superoxide radicals and promotes cone function and survival in a model of retinitis pigmentosa.
    Kanan Y; Hackett SF; Hsueh HT; Khan M; Ensign LM; Campochiaro PA
    Free Radic Biol Med; 2023 Mar; 198():118-122. PubMed ID: 36736930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insulin receptor signaling in cones.
    Rajala A; Dighe R; Agbaga MP; Anderson RE; Rajala RV
    J Biol Chem; 2013 Jul; 288(27):19503-15. PubMed ID: 23673657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the sigma-1 receptor chaperone in rod and cone photoreceptor degenerations in a mouse model of retinitis pigmentosa.
    Yang H; Fu Y; Liu X; Shahi PK; Mavlyutov TA; Li J; Yao A; Guo SZ; Pattnaik BR; Guo LW
    Mol Neurodegener; 2017 Sep; 12(1):68. PubMed ID: 28927431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective transplantation of rods delays cone loss in a retinitis pigmentosa model.
    Mohand-Said S; Hicks D; Dreyfus H; Sahel JA
    Arch Ophthalmol; 2000 Jun; 118(6):807-11. PubMed ID: 10865319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of Cone Degeneration in Retinitis Pigmentosa.
    Song DJ; Bao XL; Fan B; Li GY
    Cell Mol Neurobiol; 2023 Apr; 43(3):1037-1048. PubMed ID: 35792991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of the mechanisms of cone degeneration in retinitis pigmentosa.
    Narayan DS; Wood JP; Chidlow G; Casson RJ
    Acta Ophthalmol; 2016 Dec; 94(8):748-754. PubMed ID: 27350263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying the metabolic contribution to photoreceptor death in retinitis pigmentosa via a mathematical model.
    Camacho ET; Punzo C; Wirkus SA
    J Theor Biol; 2016 Nov; 408():75-87. PubMed ID: 27519951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-Acetylcysteine promotes long-term survival of cones in a model of retinitis pigmentosa.
    Lee SY; Usui S; Zafar AB; Oveson BC; Jo YJ; Lu L; Masoudi S; Campochiaro PA
    J Cell Physiol; 2011 Jul; 226(7):1843-9. PubMed ID: 21506115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhodopsin transgenic pigs as a model for human retinitis pigmentosa.
    Li ZY; Wong F; Chang JH; Possin DE; Hao Y; Petters RM; Milam AH
    Invest Ophthalmol Vis Sci; 1998 Apr; 39(5):808-19. PubMed ID: 9538889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic rescue models refute nonautonomous rod cell death in retinitis pigmentosa.
    Koch SF; Duong JK; Hsu CW; Tsai YT; Lin CS; Wahl-Schott CA; Tsang SH
    Proc Natl Acad Sci U S A; 2017 May; 114(20):5259-5264. PubMed ID: 28468800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clusterin enhances cell survival by suppressing neuronal nitric-oxide synthase expression in the rhodopsin S334ter-line3 retinitis pigmentosa model.
    Vargas A; Yamamoto KL; Craft CM; Lee EJ
    Brain Res; 2021 Oct; 1768():147575. PubMed ID: 34242654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential of Small Molecule-Mediated Reprogramming of Rod Photoreceptors to Treat Retinitis Pigmentosa.
    Nakamura PA; Tang S; Shimchuk AA; Ding S; Reh TA
    Invest Ophthalmol Vis Sci; 2016 Nov; 57(14):6407-6415. PubMed ID: 27893103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regressive and reactive changes in the connectivity patterns of rod and cone pathways of P23H transgenic rat retina.
    Cuenca N; Pinilla I; Sauvé Y; Lu B; Wang S; Lund RD
    Neuroscience; 2004; 127(2):301-17. PubMed ID: 15262321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatiotemporal pattern of rod degeneration in the S334ter-line-3 rat model of retinitis pigmentosa.
    Zhu CL; Ji Y; Lee EJ; Grzywacz NM
    Cell Tissue Res; 2013 Jan; 351(1):29-40. PubMed ID: 23143675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.