BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 15744744)

  • 21. Early loss of synaptic protein PSD-95 from rod terminals of rhodopsin P347L transgenic porcine retina.
    Blackmon SM; Peng YW; Hao Y; Moon SJ; Oliveira LB; Tatebayashi M; Petters RM; Wong F
    Brain Res; 2000 Dec; 885(1):53-61. PubMed ID: 11121529
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transgenic zebrafish expressing mutant human RETGC-1 exhibit aberrant cone and rod morphology.
    Collery RF; Cederlund ML; Kennedy BN
    Exp Eye Res; 2013 Mar; 108():120-8. PubMed ID: 23328348
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cell Death Pathways in Mutant Rhodopsin Rat Models Identifies Genotype-Specific Targets Controlling Retinal Degeneration.
    Viringipurampeer IA; Gregory-Evans CY; Metcalfe AL; Bashar E; Moritz OL; Gregory-Evans K
    Mol Neurobiol; 2019 Mar; 56(3):1637-1652. PubMed ID: 29911255
    [TBL] [Abstract][Full Text] [Related]  

  • 24. AAV-Txnip prolongs cone survival and vision in mouse models of retinitis pigmentosa.
    Xue Y; Wang SK; Rana P; West ER; Hong CM; Feng H; Wu DM; Cepko CL
    Elife; 2021 Apr; 10():. PubMed ID: 33847261
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Testing for a gap junction-mediated bystander effect in retinitis pigmentosa: secondary cone death is not altered by deletion of connexin36 from cones.
    Kranz K; Paquet-Durand F; Weiler R; Janssen-Bienhold U; Dedek K
    PLoS One; 2013; 8(2):e57163. PubMed ID: 23468924
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rationale for an experimental treatment of retinitis pigmentosa: 140-month test of hypothesis with one patient.
    Baumgartner WA; Baumgartner AM
    Med Hypotheses; 2013 Oct; 81(4):720-8. PubMed ID: 23948599
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Thioredoxin Encoded by the Rod-Derived Cone Viability Factor Gene Protects Cone Photoreceptors Against Oxidative Stress.
    Mei X; Chaffiol A; Kole C; Yang Y; Millet-Puel G; Clérin E; Aït-Ali N; Bennett J; Dalkara D; Sahel JA; Duebel J; Léveillard T
    Antioxid Redox Signal; 2016 Jun; 24(16):909-23. PubMed ID: 27025156
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of Müller cells in cone mosaic rearrangement in a rat model of retinitis pigmentosa.
    Lee EJ; Ji Y; Zhu CL; Grzywacz NM
    Glia; 2011 Jul; 59(7):1107-17. PubMed ID: 21547953
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Knockout of Ca
    Kilicarslan I; Zanetti L; Novelli E; Schwarzer C; Strettoi E; Koschak A
    Sci Rep; 2021 Jul; 11(1):15146. PubMed ID: 34312410
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ribosomal protein S6 kinase 1 promotes the survival of photoreceptors in retinitis pigmentosa.
    Lin B; Xiong G; Yang W
    Cell Death Dis; 2018 Nov; 9(12):1141. PubMed ID: 30442943
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential sensitivity of cones to iron-mediated oxidative damage.
    Rogers BS; Symons RC; Komeima K; Shen J; Xiao W; Swaim ME; Gong YY; Kachi S; Campochiaro PA
    Invest Ophthalmol Vis Sci; 2007 Jan; 48(1):438-45. PubMed ID: 17197565
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prion-induced photoreceptor degeneration begins with misfolded prion protein accumulation in cones at two distinct sites: cilia and ribbon synapses.
    Striebel JF; Race B; Leung JM; Schwartz C; Chesebro B
    Acta Neuropathol Commun; 2021 Jan; 9(1):17. PubMed ID: 33509294
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single-cell RNA sequencing of the retina in a model of retinitis pigmentosa reveals early responses to degeneration in rods and cones.
    Karademir D; Todorova V; Ebner LJA; Samardzija M; Grimm C
    BMC Biol; 2022 Apr; 20(1):86. PubMed ID: 35413909
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxidative stress-induced alterations in retinal glucose metabolism in Retinitis Pigmentosa.
    Kanan Y; Hackett SF; Taneja K; Khan M; Campochiaro PA
    Free Radic Biol Med; 2022 Mar; 181():143-153. PubMed ID: 35134532
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Blockade of neuronal nitric oxide synthase reduces cone cell death in a model of retinitis pigmentosa.
    Komeima K; Usui S; Shen J; Rogers BS; Campochiaro PA
    Free Radic Biol Med; 2008 Sep; 45(6):905-12. PubMed ID: 18634866
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selective rod degeneration and partial cone inactivation characterize an iodoacetic acid model of Swine retinal degeneration.
    Wang W; Fernandez de Castro J; Vukmanic E; Zhou L; Emery D; Demarco PJ; Kaplan HJ; Dean DC
    Invest Ophthalmol Vis Sci; 2011 Oct; 52(11):7917-23. PubMed ID: 21896868
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Controlled rod cell ablation in transgenic Xenopus laevis.
    Hamm LM; Tam BM; Moritz OL
    Invest Ophthalmol Vis Sci; 2009 Feb; 50(2):885-92. PubMed ID: 18836175
    [TBL] [Abstract][Full Text] [Related]  

  • 38. TIMP-1 affects the spatial distribution of dendritic processes of second-order neurons in a rat model of Retinitis Pigmentosa.
    Shin JA; Eom YS; Yu WQ; Grzywacz NM; Craft CM; Lee EJ
    Exp Eye Res; 2015 Nov; 140():41-52. PubMed ID: 26277580
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Remodeling of cone photoreceptor cells after rod degeneration in rd mice.
    Lin B; Masland RH; Strettoi E
    Exp Eye Res; 2009 Mar; 88(3):589-99. PubMed ID: 19087876
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tracing the progression of retinitis pigmentosa via photoreceptor interactions.
    Camacho ET; Wirkus S
    J Theor Biol; 2013 Jan; 317():105-18. PubMed ID: 23063618
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.