These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 15744763)

  • 1. Stress ratio contributes to fatigue crack growth in dentin.
    Arola D; Zheng W; Sundaram N; Rouland JA
    J Biomed Mater Res A; 2005 May; 73(2):201-12. PubMed ID: 15744763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of tubule orientation on fatigue crack growth in dentin.
    Arola DD; Rouland JA
    J Biomed Mater Res A; 2003 Oct; 67(1):78-86. PubMed ID: 14517864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of fatigue crack growth in resin composite, dentin and the interface.
    Soappman MJ; Nazari A; Porter JA; Arola D
    Dent Mater; 2007 May; 23(5):608-14. PubMed ID: 16806452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age, dehydration and fatigue crack growth in dentin.
    Bajaj D; Sundaram N; Nazari A; Arola D
    Biomaterials; 2006 Apr; 27(11):2507-17. PubMed ID: 16338002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic aspects of in vitro fatigue-crack growth in dentin.
    Kruzic JJ; Nalla RK; Kinney JH; Ritchie RO
    Biomaterials; 2005 Apr; 26(10):1195-204. PubMed ID: 15451639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition behavior in fatigue of human dentin: structure and anisotropy.
    Arola D; Reid J; Cox ME; Bajaj D; Sundaram N; Romberg E
    Biomaterials; 2007 Sep; 28(26):3867-75. PubMed ID: 17553559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aspects of in vitro fatigue in human cortical bone: time and cycle dependent crack growth.
    Nalla RK; Kruzic JJ; Kinney JH; Ritchie RO
    Biomaterials; 2005 May; 26(14):2183-95. PubMed ID: 15576194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatigue crack propagation behavior of ultra high molecular weight polyethylene under mixed mode conditions.
    Elbert KE; Wright TM; Rimnac CM; Klein RW; Ingraffea AR; Gunsallus K; Bartel DL
    J Biomed Mater Res; 1994 Feb; 28(2):181-7. PubMed ID: 8207029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tubule orientation and the fatigue strength of human dentin.
    Arola DD; Reprogel RK
    Biomaterials; 2006 Mar; 27(9):2131-40. PubMed ID: 16253323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kitagawa-Takahashi diagrams define the limiting conditions for cyclic fatigue failure in human dentin.
    Kruzic JJ; Ritchie RO
    J Biomed Mater Res A; 2006 Dec; 79(3):747-51. PubMed ID: 17013865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation in the fatigue crack growth resistance of human dentin by lactic acid.
    Orrego S; Xu H; Arola D
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():716-725. PubMed ID: 28183665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydration and dynamic fatigue of dentin.
    Arola D; Zheng W
    J Biomed Mater Res A; 2006 Apr; 77(1):148-59. PubMed ID: 16392141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The fracture mechanics of fatigue crack propagation in compact bone.
    Wright TM; Hayes WC
    J Biomed Mater Res; 1976 Jul; 10(4):637-48. PubMed ID: 947925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Study on fracture mechanism of human dentin].
    Zhang DS; Lu CL
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2007 Dec; 42(12):733-6. PubMed ID: 18476558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatigue crack propagation path across the dentinoenamel junction complex in human teeth.
    Dong XD; Ruse ND
    J Biomed Mater Res A; 2003 Jul; 66(1):103-9. PubMed ID: 12833436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The reduction in fatigue crack growth resistance of dentin with depth.
    Ivancik J; Neerchal NK; Romberg E; Arola D
    J Dent Res; 2011 Aug; 90(8):1031-6. PubMed ID: 21628640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of short crack growth at constant stress in bone.
    Hazenberg JG; Taylor D; Clive Lee T
    Biomaterials; 2006 Mar; 27(9):2114-22. PubMed ID: 16243392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contributions of aging to the fatigue crack growth resistance of human dentin.
    Ivancik J; Majd H; Bajaj D; Romberg E; Arola D
    Acta Biomater; 2012 Jul; 8(7):2737-46. PubMed ID: 22484693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of fatigue crack growth in human enamel and hydroxyapatite.
    Bajaj D; Nazari A; Eidelman N; Arola DD
    Biomaterials; 2008 Dec; 29(36):4847-54. PubMed ID: 18804277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.