BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 15744769)

  • 1. Heme alkylation by artesunic acid and trioxaquine DU1301, two antimalarial trioxanes.
    Laurent SA; Loup C; Mourgues S; Robert A; Meunier B
    Chembiochem; 2005 Apr; 6(4):653-8. PubMed ID: 15744769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The antimalarial trioxaquine DU1301 alkylates heme in malaria-infected mice.
    Bousejra-El Garah F; Claparols C; Benoit-Vical F; Meunier B; Robert A
    Antimicrob Agents Chemother; 2008 Aug; 52(8):2966-9. PubMed ID: 18559651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alkylation of heme by the antimalarial drug artemisinin.
    Robert A; Coppel Y; Meunier B
    Chem Commun (Camb); 2002 Mar; (5):414-5. PubMed ID: 12120518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heme as trigger and target for trioxane-containing antimalarial drugs.
    Meunier B; Robert A
    Acc Chem Res; 2010 Nov; 43(11):1444-51. PubMed ID: 20804120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alkylation of human hemoglobin A0 by the antimalarial drug artemisinin.
    Selmeczi K; Robert A; Claparols C; Meunier B
    FEBS Lett; 2004 Jan; 556(1-3):245-8. PubMed ID: 14706857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alkylating capacity and reaction products of antimalarial trioxanes after activation by a heme model.
    Cazelles J; Robert A; Meunier B
    J Org Chem; 2002 Feb; 67(3):609-19. PubMed ID: 11855997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alkylation of manganese(II) tetraphenylporphyrin by antimalarial fluorinated artemisinin derivatives.
    Rodriguez M; Bonnet-Delpon D; Bégué JP; Robert A; Meunier B
    Bioorg Med Chem Lett; 2003 Mar; 13(6):1059-62. PubMed ID: 12643911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear magnetic resonance and molecular modeling analysis of the interaction of the antimalarial drugs artelinic acid and artesunic acid with beta-cyclodextrin.
    Hartell MG; Hicks R; Bhattacharjee AK; Koser BW; Carvalho K; Van Hamont JE
    J Pharm Sci; 2004 Aug; 93(8):2076-89. PubMed ID: 15236456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimalarial peroxide dyads from natural artemisinin and hydroxyalkylated 1,2,4-trioxanes.
    Griesbeck AG; Neudörfl J; Hörauf A; Specht S; Raabe A
    J Med Chem; 2009 May; 52(10):3420-3. PubMed ID: 19402629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. C10-modified artemisinin derivatives: efficient heme-alkylating agents.
    Laurent SA; Robert A; Meunier B
    Angew Chem Int Ed Engl; 2005 Mar; 44(14):2060-3; author reply 2064-5. PubMed ID: 15782383
    [No Abstract]   [Full Text] [Related]  

  • 11. Comparison of the reactivity of antimalarial 1,2,4,5-tetraoxanes with 1,2,4-trioxolanes in the presence of ferrous iron salts, heme, and ferrous iron salts/phosphatidylcholine.
    Bousejra-El Garah F; Wong MH; Amewu RK; Muangnoicharoen S; Maggs JL; Stigliani JL; Park BK; Chadwick J; Ward SA; O'Neill PM
    J Med Chem; 2011 Oct; 54(19):6443-55. PubMed ID: 21888440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spiroadamantyl 1,2,4-trioxolane, 1,2,4-trioxane, and 1,2,4-trioxepane pairs: relationship between peroxide bond iron(II) reactivity, heme alkylation efficiency, and antimalarial activity.
    Wang X; Creek DJ; Schiaffo CE; Dong Y; Chollet J; Scheurer C; Wittlin S; Charman SA; Dussault PH; Wood JK; Vennerstrom JL
    Bioorg Med Chem Lett; 2009 Aug; 19(16):4542-5. PubMed ID: 19616946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enantiomeric 1,2,4-trioxanes display equivalent in vitro antimalarial activity versus Plasmodium falciparum malaria parasites: implications for the molecular mechanism of action of the artemisinins.
    O'Neill PM; Rawe SL; Borstnik K; Miller A; Ward SA; Bray PG; Davies J; Oh CH; Posner GH
    Chembiochem; 2005 Nov; 6(11):2048-54. PubMed ID: 16222725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linker-based hemisuccinate derivatives of artemisinin: synthesis and antimalarial assessment against multidrug-resistant Plasmodium yoelii nigeriensis in mice.
    Singh C; Kanchan R; Chaudhary S; Puri SK
    J Med Chem; 2012 Feb; 55(3):1117-26. PubMed ID: 22216834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artemisinin inspired synthetic endoperoxide drug candidates: Design, synthesis, and mechanism of action studies.
    Woodley CM; Amado PSM; Cristiano MLS; O'Neill PM
    Med Res Rev; 2021 Nov; 41(6):3062-3095. PubMed ID: 34355414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From mechanistic studies on artemisinin derivatives to new modular antimalarial drugs.
    Robert A; Dechy-Cabaret O; Cazelles J; Meunier B
    Acc Chem Res; 2002 Mar; 35(3):167-74. PubMed ID: 11900520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of charge distribution on the antimalarial activity of artemisinin analogues.
    Rafiee MA; Hadipour NL; Naderi-manesh H
    J Chem Inf Model; 2005; 45(2):366-70. PubMed ID: 15807501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced activity of mefloquine and artesunic acid against Plasmodium falciparum in vitro and P. berghei in mice by combination with ciprofloxacin.
    Andrade AA; de Pilla Varotti F; de Freitas IO; de Souza MV; Vasconcelos TR; Boechat N; Krettli AU
    Eur J Pharmacol; 2007 Mar; 558(1-3):194-8. PubMed ID: 17214980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytotoxicity of artesunic acid homo- and heterodimer molecules toward sensitive and multidrug-resistant CCRF-CEM leukemia cells.
    Horwedel C; Tsogoeva SB; Wei S; Efferth T
    J Med Chem; 2010 Jul; 53(13):4842-8. PubMed ID: 20527917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rationale design of biotinylated antimalarial endoperoxide carbon centered radical prodrugs for applications in proteomics.
    Barton V; Ward SA; Chadwick J; Hill A; O'Neill PM
    J Med Chem; 2010 Jun; 53(11):4555-9. PubMed ID: 20476788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.