BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 15744770)

  • 1. Nanoscale imaging and quantification of local proteolytic activity.
    Kusick S; Bertram H; Oberleithner H; Ludwig T
    J Cell Physiol; 2005 Sep; 204(3):767-74. PubMed ID: 15744770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional measurement of local proteolytic activity in living cells of invasive and non-invasive tumors.
    Ludwig T; Püttmann S; Bertram H; Tatenhorst L; Paulus W; Oberleithner H; Senner V
    J Cell Physiol; 2005 Mar; 202(3):690-7. PubMed ID: 15389570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local proteolytic activity in tumor cell invasion and metastasis.
    Ludwig T
    Bioessays; 2005 Nov; 27(11):1181-91. PubMed ID: 16237672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the cholesteatoma microenvironment: coculture of HaCaT keratinocytes with WS1 fibroblasts induces MMP-2 activation, invasive phenotype, and proteolysis of the extracellular matrix.
    Laeeq S; Faust R
    Laryngoscope; 2007 Feb; 117(2):313-8. PubMed ID: 17204986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional imaging of pericellular proteolysis in cancer cell invasion.
    Wolf K; Friedl P
    Biochimie; 2005; 87(3-4):315-20. PubMed ID: 15781318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging proteolysis by living human glioma cells.
    Sameni M; Dosescu J; Sloane BF
    Biol Chem; 2001 May; 382(5):785-8. PubMed ID: 11517931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion.
    Wolf K; Wu YI; Liu Y; Geiger J; Tam E; Overall C; Stack MS; Friedl P
    Nat Cell Biol; 2007 Aug; 9(8):893-904. PubMed ID: 17618273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epilysin (MMP-28) is deposited to the basolateral extracellular matrix of epithelial cells.
    Heiskanen TJ; Illman SA; Lohi J; Keski-Oja J
    Matrix Biol; 2009 Mar; 28(2):74-83. PubMed ID: 19379669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The 67 kDa laminin receptor increases tumor aggressiveness by remodeling laminin-1.
    Berno V; Porrini D; Castiglioni F; Campiglio M; Casalini P; Pupa SM; Balsari A; Ménard S; Tagliabue E
    Endocr Relat Cancer; 2005 Jun; 12(2):393-406. PubMed ID: 15947111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic force microscopy of renal cells: limits and prospects.
    Lesniewska E; Giocondi MC; Vié V; Finot E; Goudonnet JP; Le Grimellec C
    Kidney Int Suppl; 1998 Apr; 65():S42-8. PubMed ID: 9551431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular matrix determinants of proteolytic and non-proteolytic cell migration.
    Wolf K; Friedl P
    Trends Cell Biol; 2011 Dec; 21(12):736-44. PubMed ID: 22036198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlated atomic force microscopy and fluorescence lifetime imaging of live bacterial cells.
    Micic M; Hu D; Suh YD; Newton G; Romine M; Lu HP
    Colloids Surf B Biointerfaces; 2004 Apr; 34(4):205-12. PubMed ID: 15261059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of local proteolytic milieu as a factor in tumor invasiveness and metastasis formation: in vitro collagen degradation and invasion assays.
    Petrella BL
    Methods Mol Biol; 2009; 511():75-84. PubMed ID: 19347293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AFM for nanoscale microbe analysis.
    Dufrêne YF
    Analyst; 2008 Mar; 133(3):297-301. PubMed ID: 18299742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined AFM and confocal fluorescence microscope for applications in bio-nanotechnology.
    Kassies R; van der Werf KO; Lenferink A; Hunter CN; Olsen JD; Subramaniam V; Otto C
    J Microsc; 2005 Jan; 217(Pt 1):109-16. PubMed ID: 15655068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nano-scale imaging of chromosomes and DNA by scanning near-field optical/atomic force microscopy.
    Yoshino T; Sugiyama S; Hagiwara S; Fukushi D; Shichiri M; Nakao H; Kim JM; Hirose T; Muramatsu H; Ohtani T
    Ultramicroscopy; 2003; 97(1-4):81-7. PubMed ID: 12801660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and ultrastructural imaging of photodynamic therapy-induced microfilaments by atomic force microscopy.
    Jung SH; Park JY; Yoo JO; Shin I; Kim YM; Ha KS
    Ultramicroscopy; 2009 Nov; 109(12):1428-34. PubMed ID: 19665305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inverting adherent cells for visualizing ECM interactions at the basal cell side.
    Gudzenko T; Franz CM
    Ultramicroscopy; 2013 May; 128():1-9. PubMed ID: 23454470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimized sample preparation for high-resolution AFM characterization of fixed human cells.
    Francis LW; Gonzalez D; Ryder T; Baer K; Rees M; White JO; Conlan RS; Wright CJ
    J Microsc; 2010 Nov; 240(2):111-21. PubMed ID: 20946377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.