These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 15745011)

  • 1. Application of electrochemical impedance spectroscopy to the study of dioleoyl phosphatidylcholine monolayers on mercury.
    Whitehouse C; O'Flanagan R; Lindholm-Sethson B; Movaghar B; Nelson A
    Langmuir; 2004 Jan; 20(1):136-44. PubMed ID: 15745011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of gramicidin derivatives with phospholipid monolayers.
    Whitehouse C; Gidalevitz D; Cahuzac M; Koeppe Ii RE; Nelson A
    Langmuir; 2004 Oct; 20(21):9291-8. PubMed ID: 15461520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gramicidin A interaction at a dioleoyl phosphatidylcholine monolayer on a mercury drop electrode.
    Lindholm-Sethson B; Nyström J; Geladi P; Nelson A
    Anal Bioanal Chem; 2003 Feb; 375(3):350-5. PubMed ID: 12589498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical screening of self-assembling beta-sheet peptides using supported phospholipid monolayers.
    Protopapa E; Aggeli A; Boden N; Knowles PF; Salay LC; Nelson A
    Med Eng Phys; 2006 Dec; 28(10):944-55. PubMed ID: 16807052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical screening of anti-microbial peptide LL-37 interaction with phospholipids.
    Neville F; Gidalevitz D; Kale G; Nelson A
    Bioelectrochemistry; 2007 May; 70(2):205-13. PubMed ID: 16949887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct characterization of fluid lipid assemblies on mercury in electric fields.
    Vakurov A; Galluzzi M; Podestà A; Gamper N; Nelson AL; Connell SD
    ACS Nano; 2014 Apr; 8(4):3242-50. PubMed ID: 24625246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An electrochemical study into the interaction between complement-derived peptides and DOPC mono- and bilayers.
    Ringstad L; Protopapa E; Lindholm-Sethson B; Schmidtchen A; Nelson A; Malmsten M
    Langmuir; 2008 Jan; 24(1):208-16. PubMed ID: 18052298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of imidazolium-based room-temperature ionic liquids with DOPC phospholipid monolayers: electrochemical study.
    Galluzzi M; Zhang S; Mohamadi S; Vakurov A; Podestà A; Nelson A
    Langmuir; 2013 Jun; 29(22):6573-81. PubMed ID: 23654287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of self-assembling beta-sheet peptides with phospholipid monolayers: the role of aggregation state, polarity, charge and applied field.
    Protopapa E; Maude S; Aggeli A; Nelson A
    Langmuir; 2009 Mar; 25(5):3289-96. PubMed ID: 19437790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multivariate data analysis for enhanced interpretation of electrochemical impedance spectra of gramicidin-ion interactions in phospholipid monolayers.
    Lindholm-Sethson B; Geladi P; Koeppe RE; Jonsson O; Nilsson D; Nelson A
    Langmuir; 2007 Apr; 23(9):5029-32. PubMed ID: 17385898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical impedance spectroscopy of polynucleotide adsorption.
    Strasák L; Dvorák J; Hason S; Vetterl V
    Bioelectrochemistry; 2002 May; 56(1-2):37-41. PubMed ID: 12009440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of poly(N-isopropylacrylamide) (pNIPAM) based nanoparticles and their linear polymer precursor with phospholipid membrane models.
    Ormategui N; Zhang S; Loinaz I; Brydson R; Nelson A; Vakurov A
    Bioelectrochemistry; 2012 Oct; 87():211-9. PubMed ID: 22249139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical investigation of melittin reconstituted into a mercury-supported lipid bilayer.
    Becucci L; León RR; Moncelli MR; Rovero P; Guidelli R
    Langmuir; 2006 Jul; 22(15):6644-50. PubMed ID: 16831008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conducting gramicidin channel activity in phospholipid monolayers.
    Nelson A
    Biophys J; 2001 Jun; 80(6):2694-703. PubMed ID: 11371445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ZnO nanoparticle interactions with phospholipid monolayers.
    Vakurov A; Guillermo Mokry ; Drummond-Brydson R; Wallace R; Svendsen C; Nelson A
    J Colloid Interface Sci; 2013 Aug; 404():161-8. PubMed ID: 23743048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of the hydrophilic spacer length on the functionality of a mercury-supported tethered bilayer lipid membrane.
    Becucci L; Faragher RJ; Schwan A
    Bioelectrochemistry; 2015 Feb; 101():92-6. PubMed ID: 25180906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A time-based potential step analysis of electrochemical impedance incorporating a constant phase element: a study of commercially pure titanium in phosphate buffered saline.
    Ehrensberger MT; Gilbert JL
    J Biomed Mater Res A; 2010 May; 93(2):576-84. PubMed ID: 19591235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of substituent grafting on the interaction of pH-responsive polymers with phospholipid monolayers.
    Zhang S; Nelson A; Coldrick Z; Chen R
    Langmuir; 2011 Jul; 27(13):8530-9. PubMed ID: 21657216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of channel-blocking bispyridinium compounds with supported phospholipid layers.
    Nelson A; Geddes N; Tattersall J
    Cell Mol Biol Lett; 2001; 6(2A):319-26. PubMed ID: 11598653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impedance spectroscopy of bilayer lipid membranes self-assembled on agar support - interaction with HDL.
    Legin M; Laputková G; Sabo J; Vojcíková L
    Physiol Res; 2007; 56 Suppl 1():S85-S91. PubMed ID: 17552891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.