These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 15745144)

  • 1. New method for the detection of thrombus formation in cardiovascular devices: optical sensor evaluation in a flow chamber model.
    Yasuda T; Sekimoto K; Taga I; Funakubo A; Fukui Y; Takatani S
    ASAIO J; 2005; 51(1):110-5. PubMed ID: 15745144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Syllectometry: the effect of aggregometer geometry in the assessment of red blood cell shape recovery and aggregation.
    Dobbe JG; Streekstra GJ; Strackee J; Rutten MC; Stijnen JM; Grimbergen CA
    IEEE Trans Biomed Eng; 2003 Jan; 50(1):97-106. PubMed ID: 12617529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of rouleaux formation on blood coagulation.
    Riha P; Liao F; Stoltz JF
    Clin Hemorheol Microcirc; 1997; 17(4):341-6. PubMed ID: 9493903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of a sudden flow reduction on red blood cell rouleau formation and orientation using RF backscattered power.
    Qin Z; Durand LG; Allard L; Cloutier G
    Ultrasound Med Biol; 1998 May; 24(4):503-11. PubMed ID: 9651960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of GP IIb/IIIa receptor inhibitor tirofiban (aggrastat) in ex vivo canine arteriovenous shunt model of stent thrombosis.
    Rukshin V; Azarbal B; Finkelstein A; Shah PK; Cercek B; Tsang V; Kaul S
    J Cardiovasc Pharmacol; 2003 Apr; 41(4):615-24. PubMed ID: 12658064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the frequency dependence (5-120 MHz) of ultrasound backscattering by red cell aggregates in shear flow at a normal hematocrit.
    Fontaine I; Cloutier G
    J Acoust Soc Am; 2003 May; 113(5):2893-900. PubMed ID: 12765406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical aggregometry of red blood cells associated with the blood-clotting reaction in extracorporeal circulation support.
    Sakota D; Kosaka R; Nishida M; Maruyama O
    J Artif Organs; 2016 Sep; 19(3):241-8. PubMed ID: 27010641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of validated ultrasound indices to investigate erythrocyte aggregation in pigs. Preliminary in vivo results.
    Rouffiac V; Guglielmi JP; Barbet A; Lassau N; Peronneau P
    Ultrasound Med Biol; 2004 Jan; 30(1):35-44. PubMed ID: 14962606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of red blood cell rouleaux formation studied by light scattering.
    Szolna-Chodór A; Bosek M; Grzegorzewski B
    J Biomed Opt; 2015 Feb; 20(2):25001. PubMed ID: 25649625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methods and models to evaluate shear-dependent and surface reactivity-dependent antithrombotic efficacy.
    Sakariassen KS; Hanson SR; Cadroy Y
    Thromb Res; 2001 Nov; 104(3):149-74. PubMed ID: 11672758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of erythrocyte aggregation at pulsatile flow conditions with backscattering analysis.
    Nam JH; Xue S; Lim H; Shin S
    Clin Hemorheol Microcirc; 2012; 50(4):257-66. PubMed ID: 22240363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new laser photometric technique for the measurement of erythrocyte aggregation and sedimentation kinetics.
    Muralidharan E; Tateishi N; Maeda N
    Biorheology; 1994; 31(3):277-85. PubMed ID: 8729487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of an Optical Detector of Thrombus Formation on the Pivot Bearing of a Rotary Blood Pump.
    Sakota D; Fujiwara T; Ouchi K; Kuwana K; Yamazaki H; Maruyama O
    Artif Organs; 2016 Sep; 40(9):834-41. PubMed ID: 27645394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of red blood cell aggregation in shear flow.
    Lim B; Bascom PA; Cobbold RS
    Biorheology; 1997; 34(6):423-41. PubMed ID: 9640357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time dependent variation of human blood conductivity as a method for an estimation of RBC aggregation.
    Antonova N; Riha P; Ivanov I
    Clin Hemorheol Microcirc; 2008; 39(1-4):69-78. PubMed ID: 18503112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shear rate dependence of ultrasound backscattering from blood samples characterized by different levels of erythrocyte aggregation.
    Cloutier G; Qin Z
    Ann Biomed Eng; 2000 Apr; 28(4):399-407. PubMed ID: 10870896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aggregation behavior of red blood cells in shear flow. A theoretical interpretation of simultaneous rheo-optical and viscometric measurements.
    Berli CL; Quemada D
    Biorheology; 2001; 38(1):27-38. PubMed ID: 11381163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intravenous magnesium in experimental stent thrombosis in swine.
    Rukshin V; Azarbal B; Shah PK; Tsang VT; Shechter M; Finkelstein A; Cercek B; Kaul S
    Arterioscler Thromb Vasc Biol; 2001 Sep; 21(9):1544-9. PubMed ID: 11557686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasound backscattering from non-aggregating and aggregating erythrocytes--a review.
    Cloutier G; Qin Z
    Biorheology; 1997; 34(6):443-70. PubMed ID: 9640358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of differential shear stress on platelet aggregation, surface thrombosis, and endothelialization of bilateral carotid-femoral grafts in the dog.
    Wu MH; Kouchi Y; Onuki Y; Shi Q; Yoshida H; Kaplan S; Viggers RF; Ghali R; Sauvage LR
    J Vasc Surg; 1995 Oct; 22(4):382-90; discussion 390-2. PubMed ID: 7563399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.