These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 15745953)

  • 21. Functional brain areas used for the lifting of objects using a precision grip: a PET study.
    Kinoshita H; Oku N; Hashikawa K; Nishimura T
    Brain Res; 2000 Feb; 857(1-2):119-30. PubMed ID: 10700559
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Release of premotor activity after repetitive transcranial magnetic stimulation of prefrontal cortex.
    Gangitano M; Mottaghy FM; Pascual-Leone A
    Soc Neurosci; 2008; 3(3-4):289-302. PubMed ID: 18979382
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcranial direct current stimulation of the premotor cortex: effects on hand dexterity.
    Pavlova E; Kuo MF; Nitsche MA; Borg J
    Brain Res; 2014 Aug; 1576():52-62. PubMed ID: 24978602
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Corticospinal control of the thumb-index grip depends on precision of force control: a transcranial magnetic stimulation and functional magnetic resonance imagery study in humans.
    Bonnard M; Galléa C; De Graaf JB; Pailhous J
    Eur J Neurosci; 2007 Feb; 25(3):872-80. PubMed ID: 17328782
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Old age impairs the use of arbitrary visual cues for predictive control of fingertip forces during grasp.
    Cole KJ; Rotella DL
    Exp Brain Res; 2002 Mar; 143(1):35-41. PubMed ID: 11907688
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Parkinsonian patients do not utilize probabilistic advance information in a grip-lift task.
    Trampenau L; Kuhtz-Buschbeck JP; van Eimeren T
    Parkinsonism Relat Disord; 2019 Aug; 65():67-72. PubMed ID: 31105014
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sensorimotor memory for fingertip forces: evidence for a task-independent motor memory.
    Quaney BM; Rotella DL; Peterson C; Cole KJ
    J Neurosci; 2003 Mar; 23(5):1981-6. PubMed ID: 12629204
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Grasp-specific motor resonance is influenced by the visibility of the observed actor.
    Bunday KL; Lemon RN; Kilner JM; Davare M; Orban GA
    Cortex; 2016 Nov; 84():43-54. PubMed ID: 27697663
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predictive force programming in the grip-lift task: the role of memory links between arbitrary cues and object weight.
    Ameli M; Dafotakis M; Fink GR; Nowak DA
    Neuropsychologia; 2008; 46(9):2383-8. PubMed ID: 18455203
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inducing homeostatic-like plasticity in human motor cortex through converging corticocortical inputs.
    Pötter-Nerger M; Fischer S; Mastroeni C; Groppa S; Deuschl G; Volkmann J; Quartarone A; Münchau A; Siebner HR
    J Neurophysiol; 2009 Dec; 102(6):3180-90. PubMed ID: 19726723
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Probabilistic information on object weight shapes force dynamics in a grip-lift task.
    Trampenau L; Kuhtz-Buschbeck JP; van Eimeren T
    Exp Brain Res; 2015 Jun; 233(6):1711-20. PubMed ID: 25761969
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of the anterior intraparietal sulcus and the lateral occipital cortex in fingertip force scaling and weight perception during object lifting.
    van Polanen V; Rens G; Davare M
    J Neurophysiol; 2020 Aug; 124(2):557-573. PubMed ID: 32667252
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effects of explicit and implicit information on modulation of corticospinal excitability during hand-object interactions.
    Rens G; Davare M; van Polanen V
    Neuropsychologia; 2022 Dec; 177():108402. PubMed ID: 36328119
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The impact of unilateral brain damage on anticipatory grip force scaling when lifting everyday objects.
    Eidenmüller S; Randerath J; Goldenberg G; Li Y; Hermsdörfer J
    Neuropsychologia; 2014 Aug; 61():222-34. PubMed ID: 24978304
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modifying the cortical processing for motor preparation by repetitive transcranial magnetic stimulation.
    Terao Y; Furubayashi T; Okabe S; Mochizuki H; Arai N; Kobayashi S; Ugawa Y
    J Cogn Neurosci; 2007 Sep; 19(9):1556-73. PubMed ID: 17714016
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dissociating the role of ventral and dorsal premotor cortex in precision grasping.
    Davare M; Andres M; Cosnard G; Thonnard JL; Olivier E
    J Neurosci; 2006 Feb; 26(8):2260-8. PubMed ID: 16495453
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Grip-dependent cortico-spinal excitability during grasping imagination and execution.
    Cesari P; Pizzolato F; Fiorio M
    Neuropsychologia; 2011 Jun; 49(7):2121-30. PubMed ID: 21539850
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multisensory information about changing object properties can be used to quickly correct predictive force scaling for object lifting.
    van Polanen V
    Exp Brain Res; 2022 Aug; 240(7-8):2121-2133. PubMed ID: 35786747
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The space of affordances: a TMS study.
    Cardellicchio P; Sinigaglia C; Costantini M
    Neuropsychologia; 2011 Apr; 49(5):1369-1372. PubMed ID: 21241716
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arbitrary visuo-motor mapping during object manipulation in mild cognitive impairment and Alzheimer's disease: a pilot study.
    Ameli M; Kemper F; Sarfeld AS; Kessler J; Fink GR; Nowak DA
    Clin Neurol Neurosurg; 2011 Jul; 113(6):453-8. PubMed ID: 21353384
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.