These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 15746066)
1. Formation and antitumor activity of PNU-159682, a major metabolite of nemorubicin in human liver microsomes. Quintieri L; Geroni C; Fantin M; Battaglia R; Rosato A; Speed W; Zanovello P; Floreani M Clin Cancer Res; 2005 Feb; 11(4):1608-17. PubMed ID: 15746066 [TBL] [Abstract][Full Text] [Related]
2. In vivo antitumor activity and host toxicity of methoxymorpholinyl doxorubicin: role of cytochrome P450 3A. Quintieri L; Rosato A; Napoli E; Sola F; Geroni C; Floreani M; Zanovello P Cancer Res; 2000 Jun; 60(12):3232-8. PubMed ID: 10866316 [TBL] [Abstract][Full Text] [Related]
3. In vitro hepatic conversion of the anticancer agent nemorubicin to its active metabolite PNU-159682 in mice, rats and dogs: a comparison with human liver microsomes. Quintieri L; Fantin M; Palatini P; De Martin S; Rosato A; Caruso M; Geroni C; Floreani M Biochem Pharmacol; 2008 Sep; 76(6):784-95. PubMed ID: 18671948 [TBL] [Abstract][Full Text] [Related]
4. Antitumor activity of methoxymorpholinyl doxorubicin: potentiation by cytochrome P450 3A metabolism. Lu H; Waxman DJ Mol Pharmacol; 2005 Jan; 67(1):212-9. PubMed ID: 15465924 [TBL] [Abstract][Full Text] [Related]
5. Identification of novel enzyme-prodrug combinations for use in cytochrome P450-based gene therapy for cancer. Baldwin A; Huang Z; Jounaidi Y; Waxman DJ Arch Biochem Biophys; 2003 Jan; 409(1):197-206. PubMed ID: 12464259 [TBL] [Abstract][Full Text] [Related]
6. Potentiation of methoxymorpholinyl doxorubicin antitumor activity by P450 3A4 gene transfer. Lu H; Chen CS; Waxman DJ Cancer Gene Ther; 2009 May; 16(5):393-404. PubMed ID: 19011599 [TBL] [Abstract][Full Text] [Related]
7. Metabolic conversion of methoxymorpholinyl doxorubicin: from a DNA strand breaker to a DNA cross-linker. Lau DH; Duran GE; Lewis AD; Sikic BI Br J Cancer; 1994 Jul; 70(1):79-84. PubMed ID: 8018545 [TBL] [Abstract][Full Text] [Related]
8. The interaction of nemorubicin metabolite PNU-159682 with DNA fragments d(CGTACG)(2), d(CGATCG)(2) and d(CGCGCG)(2) shows a strong but reversible binding to G:C base pairs. Mazzini S; Scaglioni L; Mondelli R; Caruso M; Sirtori FR Bioorg Med Chem; 2012 Dec; 20(24):6979-88. PubMed ID: 23154079 [TBL] [Abstract][Full Text] [Related]
9. Effects of paclitaxel, cyclophosphamide, ifosfamide, tamoxifen and cyclosporine on the metabolism of methoxymorpholinodoxorubicin in human liver microsomes. Beulz-Riché D; Robert J; Riché C; Ratanasavanh D Cancer Chemother Pharmacol; 2002 Apr; 49(4):274-80. PubMed ID: 11914905 [TBL] [Abstract][Full Text] [Related]
10. Metabolism of methoxymorpholino-doxorubicin in rat, dog and monkey liver microsomes: comparison with human microsomes. Beulz-Riche D; Robert J; Menard C; Ratanasavanh D Fundam Clin Pharmacol; 2001 Dec; 15(6):373-8. PubMed ID: 11860524 [TBL] [Abstract][Full Text] [Related]
11. Anticancer activity of methoxymorpholinyl doxorubicin (PNU 152243) on human hepatocellular carcinoma. Yuan S; Zhang X; Lu L; Xu C; Yang W; Ding J Anticancer Drugs; 2004 Jul; 15(6):641-6. PubMed ID: 15205610 [TBL] [Abstract][Full Text] [Related]
12. Hematotoxicity on human bone marrow- and umbilical cord blood-derived progenitor cells and in vitro therapeutic index of methoxymorpholinyldoxorubicin and its metabolites. Ghielmini M; Colli E; Bosshard G; Pennella G; Geroni C; Torri V; D'Incalci M; Cavalli F; Sessa C Cancer Chemother Pharmacol; 1998; 42(3):235-40. PubMed ID: 9685059 [TBL] [Abstract][Full Text] [Related]
13. Biosynthesis of an aminopiperidino metabolite of irinotecan [7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecine] by human hepatic microsomes. Haaz MC; Riché C; Rivory LP; Robert J Drug Metab Dispos; 1998 Aug; 26(8):769-74. PubMed ID: 9698291 [TBL] [Abstract][Full Text] [Related]
14. Comparative metabolism of tussilagone in rat and human liver microsomes using ultra-high-performance liquid chromatography coupled with high-resolution LTQ-Orbitrap mass spectrometry. Zhang XS; Ren W; Bian BL; Zhao HY; Wang S Rapid Commun Mass Spectrom; 2015 Sep; 29(18):1641-50. PubMed ID: 26467116 [TBL] [Abstract][Full Text] [Related]
15. Metabolism of endosulfan-alpha by human liver microsomes and its utility as a simultaneous in vitro probe for CYP2B6 and CYP3A4. Casabar RC; Wallace AD; Hodgson E; Rose RL Drug Metab Dispos; 2006 Oct; 34(10):1779-85. PubMed ID: 16855053 [TBL] [Abstract][Full Text] [Related]
16. Role of human microsomal and human complementary DNA-expressed cytochromes P4501A2 and P4503A4 in the bioactivation of aflatoxin B1. Gallagher EP; Wienkers LC; Stapleton PL; Kunze KL; Eaton DL Cancer Res; 1994 Jan; 54(1):101-8. PubMed ID: 8261428 [TBL] [Abstract][Full Text] [Related]
17. Role of cytochrome P-450 from the human CYP3A gene family in the potentiation of morpholino doxorubicin by human liver microsomes. Lewis AD; Lau DH; Durán GE; Wolf CR; Sikic BI Cancer Res; 1992 Aug; 52(16):4379-84. PubMed ID: 1643634 [TBL] [Abstract][Full Text] [Related]
18. LC-MS-MS determination of nemorubicin (methoxymorpholinyldoxorubicin, PNU-152243A) and its 13-OH metabolite (PNU-155051A) in human plasma. Fraier D; Frigerio E; Brianceschi G; James CA J Pharm Biomed Anal; 2002 Oct; 30(3):377-89. PubMed ID: 12367663 [TBL] [Abstract][Full Text] [Related]
19. Stereoselective metabolism of cibenzoline, an antiarrhythmic drug, by human and rat liver microsomes: possible involvement of CYP2D and CYP3A. Niwa T; Shiraga T; Mitani Y; Terakawa M; Tokuma Y; Kagayama A Drug Metab Dispos; 2000 Sep; 28(9):1128-34. PubMed ID: 10950860 [TBL] [Abstract][Full Text] [Related]
20. Biotransformation of fluticasone: in vitro characterization. Pearce RE; Leeder JS; Kearns GL Drug Metab Dispos; 2006 Jun; 34(6):1035-40. PubMed ID: 16565171 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]