These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 15746296)

  • 1. Plasma from conscious hypoxic rats stimulates leukocyte-endothelial interactions in normoxic cremaster venules.
    Orth T; Allen JA; Wood JG; Gonzalez NC
    J Appl Physiol (1985); 2005 Jul; 99(1):290-7. PubMed ID: 15746296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of mast cells by systemic hypoxia, but not by local hypoxia, mediates increased leukocyte-endothelial adherence in cremaster venules.
    Dix R; Orth T; Allen J; Wood JG; Gonzalez NC
    J Appl Physiol (1985); 2003 Dec; 95(6):2495-502. PubMed ID: 12949012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alveolar macrophages are necessary for the systemic inflammation of acute alveolar hypoxia.
    Gonzalez NC; Allen J; Blanco VG; Schmidt EJ; van Rooijen N; Wood JG
    J Appl Physiol (1985); 2007 Oct; 103(4):1386-94. PubMed ID: 17656628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissociation between skeletal muscle microvascular PO2 and hypoxia-induced microvascular inflammation.
    Shah S; Allen J; Wood JG; Gonzalez NC
    J Appl Physiol (1985); 2003 Jun; 94(6):2323-9. PubMed ID: 12598489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systemic hypoxia increases leukocyte emigration and vascular permeability in conscious rats.
    Wood JG; Johnson JS; Mattioli LF; Gonzalez NC
    J Appl Physiol (1985); 2000 Oct; 89(4):1561-8. PubMed ID: 11007596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exercise training prevents the inflammatory response to hypoxia in cremaster venules.
    Orth TA; Allen JA; Wood JG; Gonzalez NC
    J Appl Physiol (1985); 2005 Jun; 98(6):2113-8. PubMed ID: 15705731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activated protein C attenuates microvascular injury during systemic hypoxia.
    Bartolome S; Wood JG; Casillan AJ; Simpson SQ; O'Brien-Ladner AR
    Shock; 2008 Mar; 29(3):384-7. PubMed ID: 17693940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mouse cremaster venules are predisposed to light/dye-induced thrombosis independent of wall shear rate, CD18, ICAM-1, or P-selectin.
    Rumbaut RE; Randhawa JK; Smith CW; Burns AR
    Microcirculation; 2004; 11(3):239-47. PubMed ID: 15280078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mast cells mediate the microvascular inflammatory response to systemic hypoxia.
    Steiner DR; Gonzalez NC; Wood JG
    J Appl Physiol (1985); 2003 Jan; 94(1):325-34. PubMed ID: 12391033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of the leukocyte-endothelial cell interaction in collecting venules of skeletal muscle by protamine.
    Habazettl H; Martinek V; Vollmar B; Conzen P
    J Thorac Cardiovasc Surg; 1997 Apr; 113(4):784-91. PubMed ID: 9104989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of p38 MAP kinase in postcapillary venule leukocyte adhesion induced by ischemia/reperfusion injury.
    Johns DG; Ao Z; Willette RN; Macphee CH; Douglas SA
    Pharmacol Res; 2005 May; 51(5):463-71. PubMed ID: 15749461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo study of the effect of systemic hypoxia on leukocyte-endothelium interactions.
    Baudry N; Danialou G; Boczkowski J; Vicaut E
    Am J Respir Crit Care Med; 1998 Aug; 158(2):477-83. PubMed ID: 9700124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of acute hypoxia on microcirculatory and tissue oxygen levels in rat cremaster muscle.
    Johnson PC; Vandegriff K; Tsai AG; Intaglietta M
    J Appl Physiol (1985); 2005 Apr; 98(4):1177-84. PubMed ID: 15772057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acclimatization of the systemic microcirculation to alveolar hypoxia is mediated by an iNOS-dependent increase in nitric oxide availability.
    Casillan AJ; Chao J; Wood JG; Gonzalez NC
    J Appl Physiol (1985); 2017 Oct; 123(4):974-982. PubMed ID: 28302706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. No detectable endothelial- or leukocyte-derived L-selectin ligand activity on the endothelium in inflamed cremaster muscle venules.
    Eriksson EE
    J Leukoc Biol; 2008 Jul; 84(1):93-103. PubMed ID: 18381812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of intragastric fructose and dextrose on mesenteric microvascular inflammation and postprandial hyperemia in the rat.
    Mattioli LF; Thomas JH; Holloway NB; Schropp KP; Wood JG
    JPEN J Parenter Enteral Nutr; 2011 Mar; 35(2):223-8. PubMed ID: 21378252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of velnacrine maleate in the leukocyte-endothelial cell interactions in rat cremaster microcirculatory network.
    Silva AS; Saldanha C; Martins e Silva J
    Clin Hemorheol Microcirc; 2007; 36(3):235-46. PubMed ID: 17361025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide measurements in rat mesentery reveal disrupted venulo-arteriolar communication in diabetes.
    Nellore K; Harris NR
    Microcirculation; 2004; 11(5):415-23. PubMed ID: 15280067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of acute systemic hypoxia on vascular permeability and leucocyte adherence in the anaesthetised rat.
    Mian R; Marshall JM
    Cardiovasc Res; 1993 Aug; 27(8):1531-7. PubMed ID: 8221808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An approach for studies of mediator-induced leukocyte rolling in the undisturbed microcirculation of the rat mesentery.
    Yamaki K; Lindbom L; Thorlacius H; Hedqvist P; Raud J
    Br J Pharmacol; 1998 Feb; 123(3):381-9. PubMed ID: 9504377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.