These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Restoration of circadian rhythmicity in circadian clock-deficient mice in constant light. Abraham D; Dallmann R; Steinlechner S; Albrecht U; Eichele G; Oster H J Biol Rhythms; 2006 Jun; 21(3):169-76. PubMed ID: 16731656 [TBL] [Abstract][Full Text] [Related]
3. Timed hypocaloric feeding and melatonin synchronize the suprachiasmatic clockwork in rats, but with opposite timing of behavioral output. Caldelas I; Feillet CA; Dardente H; Eclancher F; Malan A; Gourmelen S; Pévet P; Challet E Eur J Neurosci; 2005 Aug; 22(4):921-9. PubMed ID: 16115215 [TBL] [Abstract][Full Text] [Related]
4. Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain. Grima B; Chélot E; Xia R; Rouyer F Nature; 2004 Oct; 431(7010):869-73. PubMed ID: 15483616 [TBL] [Abstract][Full Text] [Related]
5. Entrainment and coupling of the hamster suprachiasmatic clock by daily dark pulses. Mendoza J; Pévet P; Challet E J Neurosci Res; 2009 Feb; 87(3):758-65. PubMed ID: 18831006 [TBL] [Abstract][Full Text] [Related]
6. Circadian and photic regulation of clock and clock-controlled proteins in the suprachiasmatic nuclei of calorie-restricted mice. Mendoza J; Pévet P; Challet E Eur J Neurosci; 2007 Jun; 25(12):3691-701. PubMed ID: 17610588 [TBL] [Abstract][Full Text] [Related]
7. Synchronization of cellular clocks in the suprachiasmatic nucleus. Yamaguchi S; Isejima H; Matsuo T; Okura R; Yagita K; Kobayashi M; Okamura H Science; 2003 Nov; 302(5649):1408-12. PubMed ID: 14631044 [TBL] [Abstract][Full Text] [Related]
9. A hVIPR transgene as a novel tool for the analysis of circadian function in the mouse suprachiasmatic nucleus. King VM; Chahad-Ehlers S; Shen S; Harmar AJ; Maywood ES; Hastings MH Eur J Neurosci; 2003 Feb; 17(4):822-32. PubMed ID: 12603272 [TBL] [Abstract][Full Text] [Related]
14. Light-inducible and clock-controlled expression of MAP kinase phosphatase 1 in mouse central pacemaker neurons. Doi M; Cho S; Yujnovsky I; Hirayama J; Cermakian N; Cato AC; Sassone-Corsi P J Biol Rhythms; 2007 Apr; 22(2):127-39. PubMed ID: 17440214 [TBL] [Abstract][Full Text] [Related]
15. Encoding the ins and outs of circadian pacemaking. Kuhlman SJ; McMahon DG J Biol Rhythms; 2006 Dec; 21(6):470-81. PubMed ID: 17107937 [TBL] [Abstract][Full Text] [Related]
16. Reorganization of the suprachiasmatic nucleus coding for day length. Naito E; Watanabe T; Tei H; Yoshimura T; Ebihara S J Biol Rhythms; 2008 Apr; 23(2):140-9. PubMed ID: 18375863 [TBL] [Abstract][Full Text] [Related]
17. Development of the light sensitivity of the clock genes Period1 and Period2, and immediate-early gene c-fos within the rat suprachiasmatic nucleus. Matejů K; Bendová Z; El-Hennamy R; Sládek M; Sosniyenko S; Sumová A Eur J Neurosci; 2009 Feb; 29(3):490-501. PubMed ID: 19222559 [TBL] [Abstract][Full Text] [Related]
18. Rhythmic regulation of membrane potential and potassium current persists in SCN neurons in the absence of environmental input. Kuhlman SJ; McMahon DG Eur J Neurosci; 2004 Aug; 20(4):1113-7. PubMed ID: 15305881 [TBL] [Abstract][Full Text] [Related]
19. Clock genes, oscillators, and cellular networks in the suprachiasmatic nuclei. Hastings MH; Herzog ED J Biol Rhythms; 2004 Oct; 19(5):400-13. PubMed ID: 15534320 [TBL] [Abstract][Full Text] [Related]
20. Rapid damping of food-entrained circadian rhythm of clock gene expression in clock-defective peripheral tissues under fasting conditions. Horikawa K; Minami Y; Iijima M; Akiyama M; Shibata S Neuroscience; 2005; 134(1):335-43. PubMed ID: 15961241 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]