These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 15747348)

  • 1. Mechanical behavior and quantitative morphology of the equine laminar junction.
    Thomason JJ; McClinchey HL; Faramarzi B; Jofriet JC
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Apr; 283(2):366-79. PubMed ID: 15747348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative morphology of the equine laminar junction in relation to capsule shape in the forehoof of Standardbreds and Thoroughbreds.
    Thomason JJ; Faramarzi B; Revill A; Sears W
    Equine Vet J; 2008 Jul; 40(5):473-80. PubMed ID: 18487104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Density and morphologic features of primary epidermal laminae in the feet of three-year-old racing Quarter Horses.
    Lancaster LS; Bowker RM; Mauer WA
    Am J Vet Res; 2007 Jan; 68(1):11-9. PubMed ID: 17199413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphology of the laminar junction in relation to the shape of the hoof capsule and distal phalanx in adult horses (Equus caballus).
    Thomason JJ; Douglas JE; Sears W
    Cells Tissues Organs; 2001; 168(4):295-311. PubMed ID: 11275696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A preliminary study into the correlation of stiffness of the laminar junction of the equine hoof with the length density of its secondary lamellae.
    Kochová P; Witter K; Cimrman R; Mezerová J; Tonar Z
    Equine Vet J; 2013 Mar; 45(2):170-5. PubMed ID: 22943492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphological spectrum of primary epidermal laminae in the forehoof of Thoroughbred horses.
    Faramarzi B
    Equine Vet J; 2011 Nov; 43(6):732-6. PubMed ID: 21496097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of strain and stress in the equine hoof capsule using finite element methods: comparison with principal strains recorded in vivo.
    Thomason JJ; McClinchey HL; Jofriet JC
    Equine Vet J; 2002 Nov; 34(7):719-25. PubMed ID: 12455844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of hoof angle variations on dorsal lamellar load in the equine hoof.
    Ramsey GD; Hunter PJ; Nash MP
    Equine Vet J; 2011 Sep; 43(5):536-42. PubMed ID: 21496082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histologic evaluation of the diversity of epidermal laminae in hooves of horses without clinical signs of laminitis.
    Kawasako K; Higashi T; Nakaji Y; Komine M; Hirayama K; Matsuda K; Okamoto M; Hashimoto H; Tagami M; Tsunoda N; Taniyama H
    Am J Vet Res; 2009 Feb; 70(2):186-93. PubMed ID: 19231949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shape, orientation and spacing of the primary epidermal laminae in the hooves of neonatal and adult horses (Equus caballus).
    Douglas JE; Thomason JJ
    Cells Tissues Organs; 2000; 166(3):304-18. PubMed ID: 10765026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stress/strain behaviour of the equine laminar junction.
    Douglas JE; Biddick TL; Thomason JJ; Jofriet JC
    J Exp Biol; 1998 Aug; 201(Pt 15):2287-97. PubMed ID: 9662499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of changes in architecture of the stratum internum of the hoof wall from fetal, newborn, and yearling horses.
    Bidwell LA; Bowker RM
    Am J Vet Res; 2006 Dec; 67(12):1947-55. PubMed ID: 17144792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in growth of the hoof wall and hoof morphology in response to regular periods of trotting exercise in Standardbreds.
    Faramarzi B; Thomason JJ; Sears WC
    Am J Vet Res; 2009 Nov; 70(11):1354-64. PubMed ID: 19878018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light and electron microscopy of keratinization in the laminar epidermis of the equine hoof with reference to laminitis.
    Budras KD; Hullinger RL; Sack WO
    Am J Vet Res; 1989 Jul; 50(7):1150-60. PubMed ID: 2476051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element analysis (FEA) as a model to predict effects of farriery on the equine hoof.
    Hinterhofer C; Stanek C; Haider H
    Equine Vet J Suppl; 2001 Apr; (33):58-62. PubMed ID: 11721570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slatted floors and solid floors: stress and strain on the bovine hoof capsule analyzed in finite element analysis.
    Hinterhofer C; Ferguson JC; Apprich V; Haider H; Stanek C
    J Dairy Sci; 2006 Jan; 89(1):155-62. PubMed ID: 16357278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional shape of the skull in vertebrates: which forces determine skull morphology in lower primates and ancestral synapsids?
    Preuschoft H; Witzel U
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Apr; 283(2):402-13. PubMed ID: 15754317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Horse hooves and bird feathers: Two model systems for studying the structure and development of highly adapted integumentary accessory organs--the role of the dermo-epidermal interface for the micro-architecture of complex epidermal structures.
    Bragulla H; Hirschberg RM
    J Exp Zool B Mol Dev Evol; 2003 Aug; 298(1):140-51. PubMed ID: 12949774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite element analysis of static loading in donkey hoof wall.
    Newlyn HA; Collins SN; Cope BC; Hopegood L; Latham RJ; Reilly JD
    Equine Vet J Suppl; 1998 Sep; (26):103-10. PubMed ID: 9932100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of architectural changes along the proximal to distal regions of the dorsal laminar interface in the equine hoof.
    Sarratt SM; Hood DM
    Am J Vet Res; 2005 Feb; 66(2):277-83. PubMed ID: 15757128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.