BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 15747461)

  • 1. [Bone mineral content and its influence factors of children aged 0-16 in a city and village].
    Yin SA; Xu Q; Meng J; Zhao X; Hu SM; Li WF; Hu J
    Wei Sheng Yan Jiu; 1997 Jan; 26(1):45-8. PubMed ID: 15747461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radial bone mineral content of normal Japanese infants and prepubertal children: influence of age, sex and body size.
    Sugimoto T; Nishino M; Tsunenari T; Kawakatsu M; Shimogaki K; Fujii Y; Negishi H; Tsutsumi M; Fukase M; Chihara K
    Bone Miner; 1994 Mar; 24(3):189-200. PubMed ID: 8019206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationship of dietary and lifestyle factors to bone mineral indexes in children.
    Bounds W; Skinner J; Carruth BR; Ziegler P
    J Am Diet Assoc; 2005 May; 105(5):735-41. PubMed ID: 15883550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Normative data for lumbar spine bone mineral content in children: influence of age, height, weight, and pubertal stage.
    De Schepper J; Derde MP; Van den Broeck M; Piepsz A; Jonckheer MH
    J Nucl Med; 1991 Feb; 32(2):216-20. PubMed ID: 1992021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An accurate and reproducible absorptiometric technique for determining bone mineral content in newborn infants.
    Greer FR; Lane J; Weiner S; Mazess RB
    Pediatr Res; 1983 Apr; 17(4):259-62. PubMed ID: 6856387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Mineral bone content in full-term infants. Effect of anthropometric characteristics].
    Rubinacci A; Rinaldi GP; Moro G; Minoli I
    Minerva Pediatr; 1989 Aug; 41(8):413-7. PubMed ID: 2601660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excess body fat negatively affects bone mass in adolescents.
    Mosca LN; Goldberg TB; da Silva VN; da Silva CC; Kurokawa CS; Bisi Rizzo AC; Corrente JE
    Nutrition; 2014; 30(7-8):847-52. PubMed ID: 24985003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo whole body and appendicular bone mineral density in rats: a dual energy X-ray absorptiometry study.
    Karahan S; Kincaid SA; Lauten SD; Wright JC
    Comp Med; 2002 Apr; 52(2):143-51. PubMed ID: 12022394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in bone mineral density, bone mineral content, and bone areal size in fracturing and non-fracturing women, and their interrelationships at the spine and hip.
    Deng HW; Xu FH; Davies KM; Heaney R; Recker RR
    J Bone Miner Metab; 2002; 20(6):358-66. PubMed ID: 12434164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncritical use of bone mineral density in absorptiometry may lead to size-related artifacts in the identification of bone mineral determinants.
    Prentice A; Parsons TJ; Cole TJ
    Am J Clin Nutr; 1994 Dec; 60(6):837-42. PubMed ID: 7985621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Positive, site-specific associations between bone mineral status, fitness, and time spent at high-impact activities in 16- to 18-year-old boys.
    Ginty F; Rennie KL; Mills L; Stear S; Jones S; Prentice A
    Bone; 2005 Jan; 36(1):101-10. PubMed ID: 15664008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anomalies in the measurement of changes in total-body bone mineral by dual-energy X-ray absorptiometry during weight change.
    Tothill P; Hannan WJ; Cowen S; Freeman CP
    J Bone Miner Res; 1997 Nov; 12(11):1908-21. PubMed ID: 9383696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between long-term calcium intake and bone mineral content of children aged from birth to 5 years.
    Lee WT; Leung SS; Lui SS; Lau J
    Br J Nutr; 1993 Jul; 70(1):235-48. PubMed ID: 8399105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of lean mass in the interpretation of total body densitometry in children and adolescents.
    Högler W; Briody J; Woodhead HJ; Chan A; Cowell CT
    J Pediatr; 2003 Jul; 143(1):81-8. PubMed ID: 12915829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationships of acylated and des-acyl ghrelin levels to bone mineralization in obese children and adolescents.
    Pacifico L; Anania C; Poggiogalle E; Osborn JF; Prossomariti G; Martino F; Chiesa C
    Bone; 2009 Aug; 45(2):274-9. PubMed ID: 19393347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone mineral content deficits of the spine and whole body in children at time of diagnosis with celiac disease.
    Jatla M; Zemel BS; Bierly P; Verma R
    J Pediatr Gastroenterol Nutr; 2009 Feb; 48(2):175-80. PubMed ID: 19179879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Do young New Zealand Pacific Island and European children differ in bone size or bone mineral?
    Grant AM; Gordon FK; Ferguson EL; Williams SM; Henry TE; Toafa VM; Guthrie BE; Goulding A
    Calcif Tissue Int; 2005 Jun; 76(6):397-403. PubMed ID: 15895283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone geometry and density in the skeleton of pre-pubertal gymnasts and school children.
    Ward KA; Roberts SA; Adams JE; Mughal MZ
    Bone; 2005 Jun; 36(6):1012-8. PubMed ID: 15876561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone and body composition of children and adolescents with repeated forearm fractures.
    Goulding A; Grant AM; Williams SM
    J Bone Miner Res; 2005 Dec; 20(12):2090-6. PubMed ID: 16294262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Central adiposity in children born small and large for gestational age.
    Biosca M; Rodríguez G; Ventura P; Samper MP; Labayen I; Collado MP; Valle S; Bueno O; Santabárbara J; Moreno LA
    Nutr Hosp; 2011; 26(5):971-6. PubMed ID: 22072340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.