BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 15748150)

  • 1. Phosphorylation state of postsynaptic density proteins.
    Trinidad JC; Thalhammer A; Specht CG; Schoepfer R; Burlingame AL
    J Neurochem; 2005 Mar; 92(6):1306-16. PubMed ID: 15748150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of novel phosphorylation sites on postsynaptic density proteins.
    Jaffe H; Vinade L; Dosemeci A
    Biochem Biophys Res Commun; 2004 Aug; 321(1):210-8. PubMed ID: 15358237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust enrichment of phosphorylated species in complex mixtures by sequential protein and peptide metal-affinity chromatography and analysis by tandem mass spectrometry.
    Collins MO; Yu L; Husi H; Blackstock WP; Choudhary JS; Grant SG
    Sci STKE; 2005 Aug; 2005(298):pl6. PubMed ID: 16118397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The postsynaptic density.
    Boeckers TM
    Cell Tissue Res; 2006 Nov; 326(2):409-22. PubMed ID: 16865346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organelle proteomics of rat synaptic proteins: correlation-profiling by isotope-coded affinity tagging in conjunction with liquid chromatography-tandem mass spectrometry to reveal post-synaptic density specific proteins.
    Li Kw; Hornshaw MP; van Minnen J; Smalla KH; Gundelfinger ED; Smit AB
    J Proteome Res; 2005; 4(3):725-33. PubMed ID: 15952719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive mapping of post-translational modifications on synaptic, nuclear, and histone proteins in the adult mouse brain.
    Tweedie-Cullen RY; Reck JM; Mansuy IM
    J Proteome Res; 2009 Nov; 8(11):4966-82. PubMed ID: 19737024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology.
    Wiśniewski JR; Nagaraj N; Zougman A; Gnad F; Mann M
    J Proteome Res; 2010 Jun; 9(6):3280-9. PubMed ID: 20415495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward a global characterization of the phosphoproteome in prostate cancer cells: identification of phosphoproteins in the LNCaP cell line.
    Giorgianni F; Zhao Y; Desiderio DM; Beranova-Giorgianni S
    Electrophoresis; 2007 Jun; 28(12):2027-34. PubMed ID: 17487921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphoproteome profiling of human skin fibroblast cells in response to low- and high-dose irradiation.
    Yang F; Stenoien DL; Strittmatter EF; Wang J; Ding L; Lipton MS; Monroe ME; Nicora CD; Gristenko MA; Tang K; Fang R; Adkins JN; Camp DG; Chen DJ; Smith RD
    J Proteome Res; 2006 May; 5(5):1252-60. PubMed ID: 16674116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic analysis of synaptosomes using isotope-coded affinity tags and mass spectrometry.
    Schrimpf SP; Meskenaite V; Brunner E; Rutishauser D; Walther P; Eng J; Aebersold R; Sonderegger P
    Proteomics; 2005 Jul; 5(10):2531-41. PubMed ID: 15984043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tyrosine phosphorylation of glycoproteins in the adult and developing rat brain.
    Soulliere J; Bissoon N; Khurgel M; Gurd JW
    J Neurosci Res; 1994 Mar; 37(4):506-14. PubMed ID: 7517458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postsynaptic density-membrane associated guanylate kinase proteins (PSD-MAGUKs) and their role in CNS disorders.
    Gardoni F; Marcello E; Di Luca M
    Neuroscience; 2009 Jan; 158(1):324-33. PubMed ID: 18773944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Profiling of mouse synaptosome proteome and phosphoproteome by IEF.
    Filiou MD; Bisle B; Reckow S; Teplytska L; Maccarrone G; Turck CW
    Electrophoresis; 2010 Apr; 31(8):1294-301. PubMed ID: 20309889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular constituents and phosphorylation-dependent regulation of the post-synaptic density.
    Yamauchi T
    Mass Spectrom Rev; 2002; 21(4):266-86. PubMed ID: 12533800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enrichment of phosphopeptides by Fe3+-immobilized magnetic nanoparticles for phosphoproteome analysis of the plasma membrane of mouse liver.
    Tan F; Zhang Y; Mi W; Wang J; Wei J; Cai Y; Qian X
    J Proteome Res; 2008 Mar; 7(3):1078-87. PubMed ID: 18266315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of chronic morphine exposure on the synaptic plasma-membrane subproteome of rats: a quantitative protein profiling study based on isotope-coded affinity tags and liquid chromatography/mass spectrometry.
    Prokai L; Zharikova AD; Stevens SM
    J Mass Spectrom; 2005 Feb; 40(2):169-75. PubMed ID: 15706614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-scale phosphoproteome analysis of human liver tissue by enrichment and fractionation of phosphopeptides with strong anion exchange chromatography.
    Han G; Ye M; Zhou H; Jiang X; Feng S; Jiang X; Tian R; Wan D; Zou H; Gu J
    Proteomics; 2008 Apr; 8(7):1346-61. PubMed ID: 18318008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the precursor ion exclusion feature of liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry for improving protein identification in shotgun proteome analysis.
    Wang N; Li L
    Anal Chem; 2008 Jun; 80(12):4696-710. PubMed ID: 18479145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of phosphorylation sites in insulin receptor substrate-1 by hypothesis-driven high-performance liquid chromatography-electrospray ionization tandem mass spectrometry.
    Yi Z; Luo M; Carroll CA; Weintraub ST; Mandarino LJ
    Anal Chem; 2005 Sep; 77(17):5693-9. PubMed ID: 16131083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein phosphorylation and expression profiling by Yin-yang multidimensional liquid chromatography (Yin-yang MDLC) mass spectrometry.
    Dai J; Jin WH; Sheng QH; Shieh CH; Wu JR; Zeng R
    J Proteome Res; 2007 Jan; 6(1):250-62. PubMed ID: 17203969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.